scholarly journals Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarization measurements

2012 ◽  
Vol 5 (4) ◽  
pp. 6083-6145 ◽  
Author(s):  
F. Waquet ◽  
C. Cornet ◽  
J.-L. Deuzé ◽  
O. Dubovik ◽  
F. Ducos ◽  
...  

Abstract. Most of the current aerosol retrievals from passive sensors are restricted to cloud-free scenes, which strongly reduces our ability to monitor the aerosol properties at a global scale. The presence of Aerosols Above Clouds (AAC) affects the polarized light reflected by the cloud layer, as shown by the spaceborne measurements provided by the POlarization and Directionality of Earth Reflectances (POLDER) instrument. We present new developments that allow retrieving the properties of mineral dust particles when they are present above clouds. These particles do not much polarize light but strongly attenuate the polarized cloud bow generated by the beneath liquid cloud layer. The spectral attenuation can be used to qualitatively identify the nature of the particles (i.e. mineral dust particles or biomass burning aerosols) whereas the magnitude of the attenuation is related to the optical thickness of the aerosol layer. We provide accurate polarized radiance calculations for AAC scenes and evaluate the contribution of the POLDER polarization measurements for the simultaneous retrieval of the aerosol and clouds properties. We investigate various scenes with mineral dust particles and biomass burning aerosols above clouds. We found that the magnitude of the primary cloud bow cannot be accurately estimated with a plane parallel transfer radiative code. The errors for the modelling of the polarized cloud bow are between 5 and 8% for homogenous cloudy scenes, as shown by a 3-D radiative transfer code. For clouds, our results confirm that the droplets size distribution is narrow in high latitude ocean regions and that the droplets effective radii retrieved from polarization measurements and from total radiance measurements are generally close for AAC scenes (departures smaller than 2 μm). For the aerosols, the POLDER polarization measurements are primarily sensitive to the particles load, size distribution, shape and real refractive index. An algorithm was developed to retrieve the Aerosol Optical Thickness (AOT) and the Angström exponent above clouds in an operational way. This method was applied to various regions of the world and time period. Large mean AOTs above clouds at 0.865 μm (>0.3) are retrieved for oceanic regions near the coasts of South Africa and California (>0.1) that correspond to biomass burning aerosols whereas even larger mean AOTs above clouds for mineral dust particles (>0.6) are also retrieved near the coasts of Senegal (for June–August 2008). For these regions and time period, the direct AAC radiative forcing is likely to be significant. The final aim of this work is the global monitoring of the aerosol above clouds properties and the estimation of the direct aerosol radiative forcing in cloudy scenes.

2013 ◽  
Vol 6 (4) ◽  
pp. 991-1016 ◽  
Author(s):  
F. Waquet ◽  
C. Cornet ◽  
J.-L. Deuzé ◽  
O. Dubovik ◽  
F. Ducos ◽  
...  

Abstract. Most of the current aerosol retrievals from passive sensors are restricted to cloud-free scenes, which strongly reduces our ability to monitor the aerosol properties at a global scale and to estimate their radiative forcing. The presence of aerosol above clouds (AAC) affects the polarized light reflected by the cloud layer, as shown by the spaceborne measurements provided by the POlarization and Directionality of Earth Reflectances (POLDER) instrument on the PARASOL satellite. In a previous work, a first retrieval method was developed for AAC scenes and evaluated for biomass-burning aerosols transported over stratocumulus clouds. The method was restricted to the use of observations acquired at forward scattering angles (90–120°) where polarized measurements are highly sensitive to fine-mode particle scattering. Non-spherical particles in the coarse mode, such as mineral dust particles, do not much polarize light and cannot be handled with this method. In this paper, we present new developments that allow retrieving also the properties of mineral dust particles above clouds. These particles do not much polarize light but strongly reduce the polarized cloud bow generated by the liquid cloud layer beneath and observed for scattering angles around 140°. The spectral attenuation can be used to qualitatively identify the nature of the particles (i.e. accumulation mode versus coarse mode, i.e. mineral dust particles versus biomass-burning aerosols), whereas the magnitude of the attenuation is related to the optical thickness of the aerosol layer. We also use the polarized measurements acquired in the cloud bow to improve the retrieval of both the biomass-burning aerosol properties and the cloud microphysical properties. We provide accurate polarized radiance calculations for AAC scenes and evaluate the contribution of the POLDER polarization measurements for the simultaneous retrieval of the aerosol and cloud properties. We investigate various scenes with mineral dust particles and biomass-burning aerosols above clouds. For clouds, our results confirm that the droplet size distribution is narrow in high-latitude ocean regions and that the droplet effective radii retrieved from both polarization measurements and from total radiance measurements are generally close for AAC scenes (departures smaller than 2 μm). We found that the magnitude of the primary cloud bow cannot be accurately estimated with a plane parallel transfer radiative code. The errors for the modeling of the polarized cloud bow are between 4 and 8% for homogenous cloudy scenes, as shown by a 3-D radiative transfer code. These effects only weakly impact the retrieval of the Aerosol Optical Thickness (AOT) performed with a mineral dust particle model for which the microphysical properties are entirely known (relative error smaller than 6%). We show that the POLDER polarization measurements allow retrieving the AOT, the fine-mode particle size, the Ångström exponent and the fraction of spherical particles. However, the complex refractive index and the coarse-mode particle size cannot be accurately retrieved with the present polarization measurements. Our complete and accurate algorithm cannot be applied to process large amounts of data, so a simpler algorithm was developed to retrieve the AOT and the Ångström exponent above clouds in an operational way. Illustrations are provided for July–August 2008 near the African coast. Large mean AOTs above clouds at 0.865 μm (>0.3) are retrieved for oceanic regions near the coasts of South Africa that correspond to biomass-burning aerosols, whereas even larger mean AOTs above clouds for mineral dust particles (>0.6) are also retrieved near the coasts of Senegal. For these regions and time period, the direct AAC radiative forcing is likely to be significant. The final aim of this work is the global monitoring of the AAC properties and the estimation of the direct aerosol radiative forcing in cloudy scenes.


2014 ◽  
Vol 27 (15) ◽  
pp. 5907-5928 ◽  
Author(s):  
M. J. Woodage ◽  
S. Woodward

Abstract This work investigates the impacts of mineral dust aerosol on climate using the atmospheric component of the U.K. High-Resolution Global Environmental Model (HiGEM) with an interactive embedded mineral dust scheme. It extends earlier work by Woodage et al. in which direct radiative forcing due to dust was calculated and in which it was reported that the global total dust burden was increased when this was included in the model. Here this result is analyzed further and the regional and global impacts are investigated. It is found that particle size distribution is critically important: In regions where large, more absorbent dust particles are present, burdens are increased because of the enhanced heating aloft, which strengthens convection, whereas, in areas where smaller, more scattering particles dominate, the surface layers are stabilized and dust emissions are decreased. The consequent changes in dust load and particle size distribution when radiative effects are included make the annual mean global forcing more positive at the top of the atmosphere (0.33 versus 0.05 W m−2). Impacts on the West African monsoon are also considered, where Saharan dust brings about a northward shift in the summertime intertropical convergence zone with increased precipitation on its northern side. This contrasts with results from some other studies, but the authors’ findings are supported by recent observational data. They argue that the impacts depend crucially on the size distribution and radiative properties of the dust particles, which are poorly known on a global scale and differ here from those used in other models.


2014 ◽  
Vol 14 (17) ◽  
pp. 24349-24385 ◽  
Author(s):  
K. M. Sakamoto ◽  
J. D. Allan ◽  
H. Coe ◽  
J. W. Taylor ◽  
T. J. Duck ◽  
...  

Abstract. Biomass-burning aerosols contribute to aerosol radiative forcing on the climate system. The magnitude of this effect is partially determined by aerosol size distributions, which are functions of source fire characteristics (e.g. fuel type, MCE) and in-plume microphysical processing. The uncertainties in biomass-burning emission number size-distributions in climate model inventories lead to uncertainties in the CCN concentrations and forcing estimates derived from these models. The BORTAS-B measurement campaign was designed to sample boreal biomass-burning outflow over Eastern Canada in the summer of 2011. Using these BORTAS-B data, we implement plume criteria to isolate the characteristic size-distribution of aged biomass-burning emissions (aged ∼1–2 days) from boreal wildfires in Northwestern Ontario. The composite median size-distribution yields a single dominant accumulation mode with Dpm = 230 nm (number-median diameter), σ = 1.7, which are comparable to literature values of other aged plumes of a similar type. The organic aerosol enhancement ratios (ΔOA / ΔCO) along the path of Flight b622 show values of 0.05–0.18 μg m−3 ppbv−1 with no significant trend with distance from the source. This lack of enhancement ratio increase/decrease with distance suggests no detectable net OA production/evaporation within the aged plume over the sampling period. A Lagrangian microphysical model was used to determine an estimate of the freshly emitted size distribution corresponding to the BORTAS-B aged size-distributions. The model was restricted to coagulation and dilution processes based on the insignificant net OA production/evaporation derived from the ΔOA / ΔCO enhancement ratios. We estimate that the fresh-plume median diameter was in the range of 59–94 nm with modal widths in the range of 1.7–2.8 (the ranges are due to uncertainty in the entrainment rate). Thus, the size of the freshly emitted particles is relatively unconstrained due to the uncertainties in the plume dilution rates.


2015 ◽  
Vol 15 (1) ◽  
pp. 393-409 ◽  
Author(s):  
P. J. DeMott ◽  
A. J. Prenni ◽  
G. R. McMeeking ◽  
R. C. Sullivan ◽  
M. D. Petters ◽  
...  

Abstract. Data from both laboratory studies and atmospheric measurements are used to develop an empirical parameterization for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken as a measure of the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A calibration factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this calibration factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization, including calibration correction, to predictions of the immersion freezing surface active site density parameterization for mineral dust particles, developed separately from AIDA experimental data alone, shows excellent agreement for data collected in a descent through a Saharan aerosol layer. These studies support the utility of laboratory measurements to obtain atmospherically relevant data on the ice nucleation properties of dust and other particle types, and suggest the suitability of considering all mineral dust as a single type of ice nucleating particle as a useful first-order approximation in numerical modeling investigations.


2010 ◽  
Vol 10 (18) ◽  
pp. 8821-8838 ◽  
Author(s):  
C. Zhao ◽  
X. Liu ◽  
L. R. Leung ◽  
B. Johnson ◽  
S. A. McFarlane ◽  
...  

Abstract. A fully coupled meteorology-chemistry-aerosol model (WRF-Chem) is applied to simulate mineral dust and its shortwave (SW) radiative forcing over North Africa. Two dust emission schemes (GOCART and DUSTRAN) and two aerosol models (MADE/SORGAM and MOSAIC) are adopted in simulations to investigate the modeling sensitivities to dust emissions and aerosol size treatments. The modeled size distribution and spatial variability of mineral dust and its radiative properties are evaluated using measurements (ground-based, aircraft, and satellites) during the AMMA SOP0 campaign from 6 January to 3 February of 2006 (the SOP0 period) over North Africa. Two dust emission schemes generally simulate similar spatial distributions and temporal evolutions of dust emissions. Simulations using the GOCART scheme with different initial (emitted) dust size distributions require ~40% difference in total emitted dust mass to produce similar SW radiative forcing of dust over the Sahel region. The modal approach of MADE/SORGAM retains 25% more fine dust particles (radius<1.25 μm) but 8% less coarse dust particles (radius>1.25 μm) than the sectional approach of MOSAIC in simulations using the same size-resolved dust emissions. Consequently, MADE/SORGAM simulates 11% higher AOD, up to 13% lower SW dust heating rate, and 15% larger (more negative) SW dust radiative forcing at the surface than MOSAIC over the Sahel region. In the daytime of the SOP0 period, the model simulations show that the mineral dust heats the lower atmosphere with an average rate of 0.8 ± 0.5 K day−1 over the Niamey vicinity and 0.5 ± 0.2 K day−1 over North Africa and reduces the downwelling SW radiation at the surface by up to 58 W m−2 with an average of 22 W m−2 over North Africa. This highlights the importance of including dust radiative impact in understanding the regional climate of North Africa. When compared to the available measurements, the WRF-Chem simulations can generally capture the measured features of mineral dust and its radiative properties over North Africa, suggesting that the model is suitable for more extensive simulations of dust impact on regional climate over North Africa.


2021 ◽  
Author(s):  
Mohammad R. Sadrian ◽  
Wendy M. Calvin ◽  
John McCormack

Abstract. Mineral dust particles dominate aerosol mass in the atmosphere and directly modify Earth’s radiative balance through absorption and scattering. This radiative forcing varies strongly with mineral composition, yet there is still limited knowledge on the mineralogy of atmospheric dust. In this study, we performed X-ray diffraction (XRD) and reflectance spectroscopy measurements on 37 different atmospheric dust samples collected as airfall in an urban setting to determine mineralogy and the relative proportions of minerals in the dust mixture. Most commonly, XRD has been used to characterize dust mineralogy; however, without prior special sample preparation, this technique is less effective for identifying poorly crystalline or amorphous phases. In addition to XRD measurements, we performed visible, near-infrared, and short-wave infrared (VNIR/SWIR) reflectance spectroscopy for these natural dust samples as a complementary technique to determine minerology and mineral abundances. Reflectance spectra of dust particles are a function of a nonlinear combination of mineral abundances in the mixture. Therefore, we used a Hapke radiative transfer model along with a linear spectral mixing approach to derive relative mineral abundances from reflectance spectroscopy. We compared spectrally derived abundances with those determined semi-quantitatively from XRD. Our results demonstrate that total clay mineral abundances from XRD are correlated with those from reflectance spectroscopy and follow similar trends; however, XRD underpredicts the total amount of clay for many of the samples. On the other hand, calcite abundances are significantly underpredicted by SWIR compared to XRD. This is caused by the weakening of absorption features associated with the fine particle size of the samples, as well as the presence of dark non-mineral materials (e.g., asphalt) in these samples. Another possible explanation for abundance discrepancies between XRD and SWIR is related to the differing sensitivity of the two techniques (crystal structure vs chemical bonds). Our results indicate that it is beneficial to use both XRD and reflectance spectroscopy to characterize airfall dust, because the former technique is good at identifying and quantifying the SWIR-transparent minerals (e.g., quartz, albite, and microcline), while the latter technique is superior for determining abundances for clays and non-mineral components.


2011 ◽  
Vol 11 (12) ◽  
pp. 32363-32390 ◽  
Author(s):  
L. Smoydzin ◽  
A. Teller ◽  
H. Tost ◽  
M. Fnais ◽  
J. Lelieveld

Abstract. We present a numerical modelling study investigating the impact of mineral dust on cloud formation over the Eastern Mediterranean for two case studies: (i) 25 September 2008 and (ii) 28/29 January 2003. On both days dust plumes crossed the Mediterranean and interacted with clouds forming along frontal systems. For our investigation we used the fully online coupled model WRF-chem. The results show that increased aerosol concentrations due to the presence of mineral dust can enhance the formation of ice crystals. This leads to slight shifts of the spatial and temporal precipitation patterns compared to scenarios where dust was not considered to act as ice nuclei. However, the total amount of precipitation did not change significantly. The only exception occurred when dust entered into an area of orographic ascent, causing glaciation of the clouds, leading to a local enhancement of rainfall. The impact of dust particles acting as giant cloud condensation nuclei on precipitation formation was found to be small. Based on our simulations the contribution of dust to the CCN population is potentially significant only for warm phase clouds. Nevertheless, the dust-induced differences in the microphysical structure of the clouds can contribute to a significant radiative forcing.


2012 ◽  
Vol 12 (11) ◽  
pp. 5129-5145 ◽  
Author(s):  
O. E. García ◽  
J. P. Díaz ◽  
F. J. Expósito ◽  
A. M. Díaz ◽  
O. Dubovik ◽  
...  

Abstract. The shortwave radiative forcing (ΔF) and the radiative forcing efficiency (ΔFeff) of natural and anthropogenic aerosols have been analyzed using estimates of radiation both at the Top (TOA) and at the Bottom Of Atmosphere (BOA) modeled based on AERONET aerosol retrievals. Six main types of atmospheric aerosols have been compared (desert mineral dust, biomass burning, urban-industrial, continental background, oceanic and free troposphere) in similar observational conditions (i.e., for solar zenith angles between 55° and 65°) in order to compare the nearly same solar geometry. The instantaneous ΔF averages obtained vary from −122 ± 37 Wm−2 (aerosol optical depth, AOD, at 0.55 μm, 0.85 ± 0.45) at the BOA for the mixture of desert mineral dust and biomass burning aerosols in West Africa and −42 ± 22 Wm−2 (AOD = 0.9 ± 0.5) at the TOA for the pure mineral dust also in this region up to −6 ± 3 Wm−2 and −4 ± 2 Wm−2 (AOD = 0.03 ± 0.02) at the BOA and the TOA, respectively, for free troposphere conditions. This last result may be taken as reference on a global scale. Furthermore, we observe that the more absorbing aerosols are overall more efficient at the BOA in contrast to at the TOA, where they backscatter less solar energy into the space. The analysis of the radiative balance at the TOA shows that, together with the amount of aerosols and their absorptive capacity, it is essential to consider the surface albedo of the region on which they are. Thus, we document that in regions with high surface reflectivity (deserts and snow conditions) atmospheric aerosols lead to a warming of the Earth-atmosphere system.


2016 ◽  
Vol 16 (4) ◽  
pp. 2221-2241 ◽  
Author(s):  
Zak Kipling ◽  
Philip Stier ◽  
Colin E. Johnson ◽  
Graham W. Mann ◽  
Nicolas Bellouin ◽  
...  

Abstract. The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3–UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3–UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN  >  3 nm), while the profiles of larger particles (e.g. CN  >  100 nm) are controlled by the same processes as the component mass profiles, plus the size distribution of primary emissions. We also show that the processes that affect the AOD-normalised radiative forcing in the model are predominantly those that affect the vertical mass distribution, in particular convective transport, in-cloud scavenging, aqueous oxidation, ageing and the vertical extent of biomass-burning emissions.


2019 ◽  
Vol 12 (7) ◽  
pp. 3789-3803 ◽  
Author(s):  
Sung-Kyun Shin ◽  
Matthias Tesche ◽  
Youngmin Noh ◽  
Detlef Müller

Abstract. This study proposes an aerosol-type classification based on the particle linear depolarization ratio (PLDR) and single-scattering albedo (SSA) provided in the AErosol RObotic NETwork (AERONET) version 3 level 2.0 inversion product. We compare our aerosol-type classification with an earlier method that uses fine-mode fraction (FMF) and SSA. Our new method allows for a refined classification of mineral dust that occurs as a mixture with other absorbing aerosols: pure dust (PD), dust-dominated mixed plume (DDM), and pollutant-dominated mixed plume (PDM). We test the aerosol classification at AERONET sites in East Asia that are frequently affected by mixtures of Asian dust and biomass-burning smoke or anthropogenic pollution. We find that East Asia is strongly affected by pollution particles with high occurrence frequencies of 50 % to 67 %. The distribution and types of pollution particles vary with location and season. The frequency of PD and dusty aerosol mixture (DDM+PDM) is slightly lower (34 % to 49 %) than pollution-dominated mixtures. Pure dust particles have been detected in only 1 % of observations. This suggests that East Asian dust plumes generally exist in a mixture with pollution aerosols rather than in pure form. In this study, we have also considered data from selected AERONET sites that are representative of anthropogenic pollution, biomass-burning smoke, and mineral dust. We find that average aerosol properties obtained for aerosol types in our PLDR–SSA-based classification agree reasonably well with those obtained at AERONET sites representative for different aerosol types.


Sign in / Sign up

Export Citation Format

Share Document