scholarly journals The sensitivity of tropical convective precipitation to the direct radiative forcings of black carbon aerosols emitted from major regions

2009 ◽  
Vol 27 (10) ◽  
pp. 3705-3711 ◽  
Author(s):  
C. Wang

Abstract. Previous works have suggested that the direct radiative forcing (DRF) of black carbon (BC) aerosols are able to force a significant change in tropical convective precipitation ranging from the Pacific and Indian Ocean to the Atlantic Ocean. In this in-depth analysis, the sensitivity of this modeled effect of BC on tropical convective precipitation to the emissions of BC from 5 major regions of the world has been examined. In a zonal mean base, the effect of BC on tropical convective precipitation is a result of a displacement of ITCZ toward the forcing (warming) hemisphere. However, a substantial difference exists in this effect associated with BC over different continents. The BC effect on convective precipitation over the tropical Pacific Ocean is found to be most sensitive to the emissions from Central and North America due to a persistent presence of BC aerosols from these two regions in the lowermost troposphere over the Eastern Pacific. The BC effect over the tropical Indian and Atlantic Ocean is most sensitive to the emissions from South as well as East Asia and Africa, respectively. Interestingly, the summation of these individual effects associated with emissions from various regions mostly exceeds their actual combined effect as shown in the model run driven by the global BC emissions, so that they must offset each other in certain locations and a nonlinearity of this type of effect is thus defined. It is known that anthropogenic aerosols contain many scattering-dominant constituents that might exert an effect opposite to that of absorbing BC. The combined aerosol forcing is thus likely differing from the BC-only one. Nevertheless, this study along with others of its kind that isolates the DRF of BC from other forcings provides an insight of the potentially important climate response to anthropogenic forcings particularly related to the unique particulate solar absorption.

2017 ◽  
Vol 30 (16) ◽  
pp. 6585-6589 ◽  
Author(s):  
Bjorn Stevens ◽  
Stephanie Fiedler

Kretzschmar et al., in a comment in 2017, use the spread in the output of aerosol–climate models to argue that the models refute the hypothesis (presented in a paper by Stevens in 2015) that for the mid-twentieth-century warming to be consistent with observations, then the present-day aerosol forcing, [Formula: see text] must be less negative than −1 W m−2. The main point of contention is the nature of the relationship between global SO2 emissions and [Formula: see text] In contrast to the concave (log-linear) relationship used by Stevens and in earlier studies, whereby [Formula: see text] becomes progressively less sensitive to SO2 emissions, some models suggest a convex relationship, which would imply a less negative lower bound. The model that best exemplifies this difference, and that is most clearly in conflict with the hypothesis of Stevens, does so because of an implausible aerosol response to the initial rise in anthropogenic aerosol precursor emissions in East and South Asia—already in 1975 this model’s clear-sky reflectance from anthropogenic aerosol over the North Pacific exceeds present-day estimates of the clear-sky reflectance by the total aerosol. The authors perform experiments using a new (observationally constrained) climatology of anthropogenic aerosols to further show that the effects of changing patterns of aerosol and aerosol precursor emissions during the late twentieth century have, for the same global emissions, relatively little effect on [Formula: see text] These findings suggest that the behavior Kretzschmar et al. identify as being in conflict with the lower bound in Stevens arises from an implausible relationship between SO2 emissions and [Formula: see text] and thus provides little basis for revising this lower bound.


2014 ◽  
Vol 27 (14) ◽  
pp. 5329-5345 ◽  
Author(s):  
Ilissa B. Ocko ◽  
V. Ramaswamy ◽  
Yi Ming

Abstract Anthropogenic aerosols comprise optically scattering and absorbing particles, with the principal concentrations being in the Northern Hemisphere, yielding negative and positive global mean radiative forcings, respectively. Aerosols also influence cloud albedo, yielding additional negative radiative forcings. Climate responses to a comprehensive set of isolated aerosol forcing simulations are investigated in a coupled atmosphere–ocean framework, forced by preindustrial to present-day aerosol-induced radiative perturbations. Atmospheric and oceanic climate responses (including precipitation, atmospheric circulation, atmospheric and oceanic heat transport, sea surface temperature, and salinity) to negative and positive particulate forcings are consistently anticorrelated. The striking effects include distinct patterns of changes north and south of the equator that are governed by the sign of the aerosol forcing and its initiation of an interhemispheric forcing asymmetry. The presence of opposing signs of the forcings between the aerosol scatterers and absorbers, and the resulting contrast in climate responses, thus dilutes the individual effects of aerosol types on influencing global and regional climate conditions. The aerosol-induced changes in the variables also have a distinct fingerprint when compared to the responses of the more globally uniform and interhemispherically symmetric well-mixed greenhouse gas forcing. The significance of employing a full ocean model is demonstrated in this study by the ability to partition how individual aerosols influence atmospheric and oceanic conditions separately.


2019 ◽  
Author(s):  
Marianne T. Lund ◽  
Gunnar Myhre ◽  
Bjørn H. Samset

Abstract. Emissions of anthropogenic aerosols are expected to change drastically over the coming decades, with potentially significant climate implications. Using the most recent generation of harmonized emission scenarios, the Shared Socioeconomic Pathways (SSPs) as input to a global chemistry transport and radiative transfer model, we provide estimates of the projected future global and regional burdens and radiative forcing of anthropogenic aerosols under three different levels of air pollution control: strong (SSP1), medium (SSP2) and weak (SSP3). We find that the broader range of future air pollution emission trajectories spanned by the SSPs compared to previous scenarios translates into total aerosol forcing estimates in 2100 relative to 1750 ranging from −0.04 W m−2 in SSP1-1.9 to −0.51 W m−2 in SSP3-7.0. Compared to our 1750–2015 estimate of −0.61 W m−2, this shows that depending on the success of air pollution policies over the coming decades, aerosol radiative forcing may weaken by nearly 95 % or remain close to the pre-industrial to present-day level. In all three scenarios there is a positive forcing in 2100 relative to 2015, from 0.51 W m−2 in SSP1-1.9 to 0.04 W m−2 in SSP3-7.0. Results also demonstrate significant differences across regions and scenarios, especially in South Asia and Africa. While rapid weakening of the negative aerosol forcing following effective air quality policies will unmask more of the greenhouse gas-induced global warming, slow progress on mitigating air pollution will significantly enhance the atmospheric aerosol levels and risk to human health. In either case, the resulting impacts on regional and global climate can be significant.


2016 ◽  
Vol 29 (14) ◽  
pp. 5175-5188 ◽  
Author(s):  
Hai Wang ◽  
Shang-Ping Xie ◽  
Qinyu Liu

Abstract Spatial patterns of climate response to changes in anthropogenic aerosols and well-mixed greenhouse gases (GHGs) are investigated using climate model simulations for the twentieth century. The climate response shows both similarities and differences in spatial pattern between aerosol and GHG runs. Common climate response between aerosol and GHG runs tends to be symmetric about the equator. This work focuses on the distinctive patterns that are unique to the anthropogenic aerosol forcing. The tropospheric cooling induced by anthropogenic aerosols is locally enhanced in the midlatitude Northern Hemisphere with a deep vertical structure around 40°N, anchoring a westerly acceleration in thermal wind balance. The aerosol-induced negative radiative forcing in the Northern Hemisphere requires a cross-equatorial Hadley circulation to compensate interhemispheric energy imbalance in the atmosphere. Associated with a southward shift of the intertropical convergence zone, this interhemispheric asymmetric mode is unique to aerosol forcing and absent in GHG runs. Comparison of key climate response pattern indices indicates that the aerosol forcing dominates the interhemispheric asymmetric climate response in historical all-forcing simulations, as well as regional precipitation change such as the drying trend over the East Asian monsoon region. While GHG forcing dominates global mean surface temperature change, its effect is on par with and often opposes the aerosol effect on precipitation, making it difficult to detect anthropogenic change in rainfall from historical observations.


2019 ◽  
Vol 32 (3) ◽  
pp. 843-858 ◽  
Author(s):  
Hai Wang ◽  
Shang-Ping Xie ◽  
Yu Kosaka ◽  
Qinyu Liu ◽  
Yan Du

Anthropogenic aerosols partially mask the greenhouse warming and cause the reduction in Asian summer monsoon precipitation and circulation. By decomposing the atmospheric change into the direct atmospheric response to radiative forcing and sea surface temperature (SST)-mediated change, the physical mechanisms for anthropogenic-aerosol-induced changes in the East Asian summer monsoon (EASM) and South Asian summer monsoon (SASM) are diagnosed. Using coupled and atmospheric general circulation models, this study shows that the aerosol-induced troposphere cooling over Asian land regions generates anomalous sinking motion between 20° and 40°N and weakens the EASM north of 20°N without SST change. The decreased EASM precipitation and the attendant wind changes are largely due to this direct atmospheric response to radiative forcing, although the aerosol-induced North Pacific SST cooling also contributes. The SST-mediated change dominates the aerosol-induced SASM response, with contributions from both the north–south interhemispheric SST gradient and the local SST cooling pattern over the tropical Indian Ocean. Specifically, with large meridional gradient, the zonal-mean SST cooling pattern is most important for the Asian summer monsoon response to anthropogenic aerosol forcing, resulting in a reorganization of the regional meridional atmospheric overturning circulation. While uncertainty in aerosol radiative forcing has been emphasized in the literature, our results show that the intermodel spread is as large in the SST effect on summer monsoon rainfall, calling for more research into the ocean–atmosphere coupling.


2019 ◽  
Vol 32 (4) ◽  
pp. 1293-1306 ◽  
Author(s):  
Yangyang Song ◽  
Guoxing Chen ◽  
Wei-Chyung Wang

The WRF-simulated changes in clouds and climate due to the increased anthropogenic aerosols for the summers of 2002–08 (vs the 1970s) over eastern China were used to offline calculate the radiative forcings associated with aerosol–radiation (AR) and aerosol–cloud–radiation (ACR) interactions, which subsequently facilitated the interpretation of surface temperature changes. During this period, the increases of aerosol optical depth (ΔAOD) averaged over eastern China range from 0.18 in 2004 to 0.26 in 2007 as compared to corresponding cases in the 1970s, and the multiyear means (standard deviations) of AR and ACR forcings at the surface are −6.7 (0.58) and −3.5 (0.63) W m−2, respectively, indicating the importance of cloud changes in affecting both the aerosol climate forcing and its interannual variation. The simulated mean surface cooling is 0.35°C, dominated by AR and ACR with a positive (cooling) feedback associated with changes in meteorology (~10%), and two negative (warming) feedbacks associated with decreases in latent (~70%) and sensible (~20%) heat fluxes. More detailed spatial characteristics were analyzed using ensemble simulations for the year 2008. Three regions—Jing-Jin-Ji (ΔAOD ~ 0.63), Sichuan basin (ΔAOD ~ 0.31), and middle Yangtze River valley (ΔAOD ~ 0.26)—at different climate regimes were selected to investigate the relative roles of AR and ACR. While the AR forcing is closely related to ΔAOD values, the ACR forcing presents different regional characteristics owing to cloud changes. In addition, the surface heat flux feedbacks are also different between regions. The study thus illustrates that ACR forcing is useful as a diagnostic parameter to unravel the complexity of climate change to aerosol forcing over eastern China.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 456 ◽  
Author(s):  
Xiangjun Shi ◽  
Wentao Zhang ◽  
Jiaojiao Liu

The same prescribed anthropogenic aerosol forcing was implemented into three climate models. The atmosphere components of these participating climate models were the GAMIL, ECHAM, and CAM models. Ensemble simulations were carried out to obtain a reliable estimate of anthropogenic aerosol effective radiative forcing (ERF). The ensemble mean ERFs from these three participating models with this aerosol forcing were −0.27, −0.63, and −0.54 W∙m−2. The model diversity in ERF is clearly reduced as compared with those based on the models’ own default approaches (−1.98, −0.21, and −2.22 W∙m−2). This is consistent with the design of this aerosol forcing. The modeled ERF can be decomposed into two basic components, i.e., the instantaneous radiative forcing (RF) from aerosol–radiation interactions (RFari) and the aerosol-induced changes in cloud forcing (△Fcloud*). For the three participating models, the model diversity in RFari (−0.21, −0.33, and −0.29 W∙m−2) could be constrained by reducing the differences in natural aerosol radiative forcings. However, it was difficult to figure out the reason for the model diversity in △Fcloud* (−0.05, −0.28, and −0.24 W∙m−2), which was the dominant source of the model diversity in ERF. The variability of modeled ERF was also studied. Ensemble simulations showed that the modeled RFs were very stable. The rapid adjustments (ERF − RF) had an important role to play in the quantification of the perturbation of ERF. Fortunately, the contribution from the rapid adjustments to the mean ERF was very small. This study also showed that we should pay attention to the difference between the aerosol climate effects we want and the aerosol climate effects we calculate.


2011 ◽  
Vol 11 (2) ◽  
pp. 799-816 ◽  
Author(s):  
G. S. Jones ◽  
N. Christidis ◽  
P. A. Stott

Abstract. Past research has shown that the dominant influence on recent global climate changes is from anthropogenic greenhouse gas increases with implications for future increases in global temperatures. One mitigation proposal is to reduce black carbon aerosol emissions. How much warming can be offset by controlling black carbon is unclear, especially as its influence on past climate has not been previously unambiguously detected. In this study observations of near-surface warming over the last century are compared with simulations using a climate model, HadGEM1. In the simulations black carbon, from fossil fuel and bio-fuel sources (fBC), produces a positive radiative forcing of about +0.25 Wm−2 over the 20th century, compared with +2.52 Wm−2 for well mixed greenhouse gases. A simulated warming of global mean near-surface temperatures over the twentieth century from fBC of 0.14 ± 0.1 K compares with 1.06 ± 0.07 K from greenhouse gases, −0.58 ± 0.10 K from anthropogenic aerosols, ozone and land use changes and 0.09 ± 0.09 K from natural influences. Using a detection and attribution methodology, the observed warming since 1900 has detectable influences from anthropogenic and natural factors. Fossil fuel and bio-fuel black carbon is found to have a detectable contribution to the warming over the last 50 yr of the 20th century, although the results are sensitive to the period being examined as fBC is not detected for the later fifty year period ending in 2006. The attributed warming of fBC was found to be consistent with the warming from fBC unscaled by the detection analysis. This study suggests that there is a possible significant influence from fBC on global temperatures, but its influence is small compared to that from greenhouse gas emissions.


2009 ◽  
Vol 9 (2) ◽  
pp. 6571-6595 ◽  
Author(s):  
C. Wang ◽  
G.-R. Jeong ◽  
N. Mahowald

Abstract. Particulate solar absorption is a critical factor in determining the value and even sign of the direct radiative forcing of aerosols. The heating to the atmosphere and cooling to the Earth's surface caused by this absorption are hypothesized to have significant climate impacts. We find that anthropogenic aerosols play an important role around the globe in total particulate absorption of solar radiation. The global-average anthropogenic fraction in total aerosol absorbing optical depth exceeds 65% in all seasons. Combining the potentially highest dust absorption with the lowest anthropogenic absorption within our model range, this fraction would still exceed 47% in most seasons except for boreal spring (36%) when dust abundance reaches its peak. Nevertheless, dust aerosol is still a critical absorbing constituent over places including North Africa, the entire tropical Atlantic, and during boreal spring in most part of Eurasian continent. The equality in absorbing solar radiation of dust and anthropogenic aerosols appears to be particularly important over Indian subcontinent and nearby regions as well as North Africa.


Sign in / Sign up

Export Citation Format

Share Document