scholarly journals Recent past (1979–2014) and future (2070–2099) isoprene fluxes over Europe simulated with the MEGAN–MOHYCAN model

2018 ◽  
Vol 15 (12) ◽  
pp. 3673-3690 ◽  
Author(s):  
Maite Bauwens ◽  
Trissevgeni Stavrakou ◽  
Jean-François Müller ◽  
Bert Van Schaeybroeck ◽  
Lesley De Cruz ◽  
...  

Abstract. Isoprene is a highly reactive volatile organic compound emitted by vegetation, known to be a precursor of secondary organic aerosols and to enhance tropospheric ozone formation under polluted conditions. Isoprene emissions respond strongly to changes in meteorological parameters such as temperature and solar radiation. In addition, the increasing CO2 concentration has a dual effect, as it causes both a direct emission inhibition as well as an increase in biomass through fertilization. In this study we used the MEGAN (Model of Emissions of Gases and Aerosols from Nature) emission model coupled with the MOHYCAN (Model of HYdrocarbon emissions by the CANopy) canopy model to calculate the isoprene fluxes emitted by vegetation in the recent past (1979–2014) and in the future (2070–2099) over Europe at a resolution of 0.1∘×0.1∘. As a result of the changing climate, modeled isoprene fluxes increased by 1.1 % yr−1 on average in Europe over 1979–2014, with the strongest trends found over eastern Europe and European Russia, whereas accounting for the CO2 inhibition effect led to reduced emission trends (0.76 % yr−1). Comparisons with field campaign measurements at seven European sites suggest that the MEGAN–MOHYCAN model provides a reliable representation of the temporal variability of the isoprene fluxes over timescales between 1 h and several months. For the 1979–2014 period the model was driven by the ECMWF ERA-Interim reanalysis fields, whereas for the comparison of current with projected future emissions, we used meteorology simulated with the ALARO regional climate model. Depending on the representative concentration pathway (RCP) scenarios for greenhouse gas concentration trajectories driving the climate projections, isoprene emissions were found to increase by +7 % (RCP2.6), +33 % (RCP4.5), and +83 % (RCP8.5), compared to the control simulation, and even stronger increases were found when considering the potential impact of CO2 fertilization: +15 % (RCP2.6), +52 % (RCP4.5), and +141 % (RCP8.5). However, the inhibitory CO2 effect goes a long way towards canceling these increases. Based on two distinct parameterizations, representing strong or moderate inhibition, the projected emissions accounting for all effects were estimated to be 0–17 % (strong inhibition) and 11–65 % (moderate inhibition) higher than in the control simulation. The difference obtained using the two CO2 parameterizations underscores the large uncertainty associated to this effect.

2017 ◽  
Author(s):  
Maite Bauwens ◽  
Trissevgeni Stavrakou ◽  
Jean-François Müller ◽  
Bert Van Schaeybroeck ◽  
Lesley De Cruz ◽  
...  

Abstract. Isoprene is a highly reactive volatile organic compound emitted by vegetation, known to be a precursor of secondary organic aerosol and to enhance tropospheric ozone formation under polluted conditions. Isoprene emissions respond strongly to changes in meteorological parameters such as temperature and solar radiation; in addition, the increasing CO2 concentration has a dual effect, as it causes both a direct emission inhibition as well as an increase in biomass through fertilization. In this study we used the MEGAN (Model of Emissions of Gases and Aerosols from Nature) emission model coupled with the MOHYCAN (Model of HYdrocarbon emissions by the CANopy) canopy model to calculate the isoprene fluxes emitted by vegetation in the recent past (1979–2014) and in the future (2070–2099) over Europe at a resolution of 0.1° × 0.1°. As a result of the changing climate, modeled isoprene fluxes increased by 1.1 % yr−1 on average in Europe over 1979–2014, with the strongest trends found over eastern Europe and European Russia, whereas accounting also for the CO2 inhibition effect led to reduced emission trends (0.76 % yr−1). Comparisons with field campaign measurements at seven European sites suggest that the MEGAN-MOHYCAN model provides a reliable representation of the temporal variability of the isoprene fluxes over time scales between 1 hour to several months. For the 1979–2014 period the model was driven by the ECMWF ERA-Interim reanalysis fields, whereas for the comparison of current with projected future emissions, we used meteorology simulated with the ALARO regional climate model. Depending on the representative concentration pathways (RCPs) scenarios for greenhouse gas concentration trajectories driving the climate projections, isoprene emissions were found to increase as a result of climate change by +7 % (RCP2.6), +33 % (RCP4.5) and +83 % (RCP8.5), compared to the control simulation, and even stronger increases were found when considering the potential impact of CO2 fertilization, +15 % (RCP2.6), +52 % (RCP4.5) and +141 % (RCP8.5). However, the inhibitory CO2 effect goes a long way in cancelling these increases. Based on two distinct parameterizations, representing strong or moderate inhibition, the projected emissions accounting for all effects were estimated to be 0–17 % (strong inhibition) and 11–65 % (moderate inhibition) higher than in the control simulation. The difference obtained using the two CO2 parameterizations underscores the large uncertainty associated to this effect.


2020 ◽  
Author(s):  
Melissa Bukovsky ◽  
Linda Mearns ◽  
Jing Gao ◽  
Brian O'Neill

<p>In order to assess the combined effects of green-house-gas-induced climate change and land-use land-cover change (LULCC), we have produced regional climate model (RCM) simulations that are complementary to the North-American Coordinated Regional Downscaling Experiment (NA-CORDEX) simulations, but with future LULCCs that are consistent with particular Shared Socioeconomic Pathways (SSPs).  In standard, existing NA-CORDEX simulations, land surface characteristics are held constant at present day conditions.  These new simulations, in conjunction with the NA-CORDEX simulations, will help us assess the magnitude of the changes in regional climate forced by LULCC relative to those produced by increasing greenhouse gas concentrations.     </p><p>Understanding the magnitude of the regional climate effects of LULCC is important to the SSP-RCP scenarios framework.  Whether or not the pattern of climate change resulting from a given SSP-RCP pairing is sensitive to the pattern of LULCC is an understudied problem.  This work helps address this question, and will inform thinking about possible needed modifications to the scenarios framework to better account for climate-land use interactions.</p><p>Accordingly, in this presentation, we will examine the state of the climate at the end of the 21<sup>st</sup> century with and without SSP-driven LULCCs in RCM simulations produced using WRF under the RCP8.5 concentration scenario.  The included LULCC change effects have been created following the SSP3 and SSP5 narratives using an existing agricultural land model linked with a new long-term spatial urban land model. </p>


2019 ◽  
Vol 10 (1) ◽  
pp. 73-89 ◽  
Author(s):  
Filippo Giorgi ◽  
Francesca Raffaele ◽  
Erika Coppola

Abstract. We revisit the issue of the response of precipitation characteristics to global warming based on analyses of global and regional climate model projections for the 21st century. The prevailing response we identify can be summarized as follows: increase in the intensity of precipitation events and extremes, with the occurrence of events of “unprecedented” magnitude, i.e., a magnitude not found in the present-day climate; decrease in the number of light precipitation events and in wet spell lengths; and increase in the number of dry days and dry spell lengths. This response, which is mostly consistent across the models we analyzed, is tied to the difference between precipitation intensity responding to increases in local humidity conditions and circulations, especially for heavy and extreme events, and mean precipitation responding to slower increases in global evaporation. These changes in hydroclimatic characteristics have multiple and important impacts on the Earth's hydrologic cycle and on a variety of sectors. As examples we investigate effects on potential stress due to increases in dry and wet extremes, changes in precipitation interannual variability, and changes in the potential predictability of precipitation events. We also stress how the understanding of the hydroclimatic response to global warming can provide important insights into the fundamental behavior of precipitation processes, most noticeably tropical convection.


2018 ◽  
Author(s):  
Filippo Giorgi ◽  
Francesca Raffaele ◽  
Erika Coppola

Abstract. We revisit the issue of the response of the precipitation characteristics to global warming based on analyses of global and regional climate model projections for the 21st century. The prevailing response we identify can be summarized as follows: increase in the intensity of precipitation events and extremes, with the occurrence of events of unprecedented magnitude, i.e. magnitude not found in present day climate; decrease in the number of light precipitation events and in wet spell lengths; increase in the number of dry days and dry spell lengths. This response, which is mostly consistent across the models we analized, is tied to the difference between precipitation intensity responding to increases in local humidity conditions, especially for heavy and extreme events, and mean precipitation responding to slower increases in global evaporation. These changes in hydroclimatic characteristics have multiple and important impacts on the Earth's hydrologic cycle and on a variety of sectors, and as examples we investigate effects on the potential stress due to increases in dry and wet extremes, changes in precipitation interannual variability and changes in potential predictability of precipitation events. We also stress how the understanding of the hydroclimatic response to global warming can shed important insights into the fundamental behavior of precipitation processes, most noticeably tropical convection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Claudio Bravo ◽  
Deniz Bozkurt ◽  
Andrew N. Ross ◽  
Duncan J. Quincey

AbstractThe Northern Patagonian Icefield (NPI) and the Southern Patagonian Icefield (SPI) have increased their ice mass loss in recent decades. In view of the impacts of glacier shrinkage in Patagonia, an assessment of the potential future surface mass balance (SMB) of the icefields is critical. We seek to provide this assessment by modelling the SMB between 1976 and 2050 for both icefields, using regional climate model data (RegCM4.6) and a range of emission scenarios. For the NPI, reductions between 1.5 m w.e. (RCP2.6) and 1.9 m w.e. (RCP8.5) were estimated in the mean SMB during the period 2005–2050 compared to the historical period (1976–2005). For the SPI, the estimated reductions were between 1.1 m w.e. (RCP2.6) and 1.5 m w.e. (RCP8.5). Recently frontal ablation estimates suggest that mean SMB in the SPI is positively biased by 1.5 m w.e., probably due to accumulation overestimation. If it is assumed that frontal ablation rates of the recent past will continue, ice loss and sea-level rise contribution will increase. The trend towards lower SMB is mostly explained by an increase in surface melt. Positive ice loss feedbacks linked to increasing in meltwater availability are expected for calving glaciers.


2015 ◽  
Vol 19 (12) ◽  
pp. 4783-4810 ◽  
Author(s):  
C. Mathison ◽  
A. J. Wiltshire ◽  
P. Falloon ◽  
A. J. Challinor

Abstract. South Asia is a region with a large and rising population, a high dependence on water intense industries, such as agriculture and a highly variable climate. In recent years, fears over the changing Asian summer monsoon (ASM) and rapidly retreating glaciers together with increasing demands for water resources have caused concern over the reliability of water resources and the potential impact on intensely irrigated crops in this region. Despite these concerns, there is a lack of climate simulations with a high enough resolution to capture the complex orography, and water resource analysis is limited by a lack of observations of the water cycle for the region. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. Two global climate models (GCMs), which represent the ASM reasonably well are downscaled (1960–2100) using a regional climate model (RCM). In the absence of robust observations, ERA-Interim reanalysis is also downscaled providing a constrained estimate of the water balance for the region for comparison against the GCMs (1990–2006). The RCM river flow is routed using a river-routing model to allow analysis of present-day and future river flows through comparison with available river gauge observations. We examine how useful these simulations are for understanding potential changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows but overestimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century. The future maximum river-flow rates still occur during the ASM period, with a magnitude in some cases, greater than the present-day natural variability. Increases in river flow could mean additional water resources for irrigation, the largest usage of water in this region, but has implications in terms of inundation risk. These projected increases could be more than countered by changes in demand due to depleted groundwater, increases in domestic use or expansion of water intense industries. Including missing hydrological processes in the model would make these projections more robust but could also change the sign of the projections.


2021 ◽  
Author(s):  
Gaby S. Langendijk ◽  
Diana Rechid ◽  
Daniela Jacob

<p>Urban areas are prone to climate change impacts. A transition towards sustainable and climate-resilient urban areas is relying heavily on useful, evidence-based climate information on urban scales. However, current climate data and information produced by urban or climate models are either not scale compliant for cities, or do not cover essential parameters and/or urban-rural interactions under climate change conditions. Furthermore, although e.g. the urban heat island may be better understood, other phenomena, such as moisture change, are little researched. Our research shows the potential of regional climate models, within the EURO-CORDEX framework, to provide climate projections and information on urban scales for 11km and 3km grid size. The city of Berlin is taken as a case-study. The results on the 11km spatial scale show that the regional climate models simulate a distinct difference between Berlin and its surroundings for temperature and humidity related variables. There is an increase in urban dry island conditions in Berlin towards the end of the 21st century. To gain a more detailed understanding of climate change impacts, extreme weather conditions were investigated under a 2°C global warming and further downscaled to the 3km scale. This enables the exploration of differences of the meteorological processes between the 11km and 3km scales, and the implications for urban areas and its surroundings. The overall study shows the potential of regional climate models to provide climate change information on urban scales.</p>


2021 ◽  
Author(s):  
Daniel Abel ◽  
Katrin Ziegler ◽  
Felix Pollinger ◽  
Heiko Paeth

<p>The European Regional Development Fund-Project BigData@Geo aims to create highly resolved climate projections for the model region of Lower Franconia in Bavaria, Germany. These projections are analyzed and made available to local stakeholders of agriculture, forestry, and viniculture as well as general public. Since regional climate models’ spatiotemporal resolution often is too coarse to deal with such local issues, the regional climate model REMO is improved within the frame of the project in cooperation with the Climate Service Center Germany (GERICS).</p><p>Accurate and highly resolved climate projections require realistic modeling of soil hydrology. Thus, REMO’s original bucket scheme is replaced by a 5-layer soil scheme. It allows for the representation of water below the root zone. Evaporation is possible solely from the top layer instead of the entire bucket and water can flow vertically between the layers. Consequently, the properties and processes change significantly compared to the bucket scheme. Both, the bucket and the 5-layer scheme, use the improved Arno scheme to separate throughfall into infiltration and surface runoff.</p><p>In this study, we examine if this scheme is suitable for use with the improved soil hydrology or if other schemes lead to better results. For this, we (1) modify the improved Arno scheme and further introduce the infiltration equations of (2) Philip as well as (3) Green and Ampt. First results of the comparison of these four different schemes and their influence on soil moisture and near-surface atmospheric variables are presented.</p>


Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 493 ◽  
Author(s):  
Leonard Druyan ◽  
Matthew Fulakeza

A prequel study showed that dynamic downscaling using a regional climate model (RCM) over Africa improved the Goddard Institute for Space Studies Atmosphere-Ocean Global Climate Model (GISS AOGCM: ModelE) simulation of June–September rainfall patterns over Africa. The current study applies bias corrections to the lateral and lower boundary data from the AOGCM driving the RCM, based on the comparison of a 30-year simulation to the actual climate. The analysis examines the horizontal pattern of June–September total accumulated precipitation, the time versus latitude evolution of zonal mean West Africa (WA) precipitation (showing monsoon onset timing), and the latitude versus altitude cross-section of zonal winds over WA (showing the African Easterly Jet and the Tropical Easterly Jet). The study shows that correcting for excessively warm AOGCM Atlantic sea-surface temperatures (SSTs) improves the simulation of key features, whereas applying 30-year mean bias corrections to atmospheric variables driving the RCM at the lateral boundaries does not improve the RCM simulations. We suggest that AOGCM climate projections for Africa should benefit from downscaling by nesting an RCM that has demonstrated skill in simulating African climate, driven with bias-corrected SST.


2019 ◽  
Vol 11 (4) ◽  
pp. 1370-1382 ◽  
Author(s):  
Asma Hanif ◽  
Ashwin Dhanasekar ◽  
Anthony Keene ◽  
Huishu Li ◽  
Kenneth Carlson

Abstract Projected climate change impacts on the hydrological regime and corresponding flood risks were examined for the years 2030 (near-term) and 2050 (long-term), under representative concentration pathways (RCP) 4.5 (moderate) and 8.5 (high) emission scenarios. The United States Army Corps of Engineers' (USACE) Hydrologic Engineering Center's Hydrologic Modeling System was used to simulate the complete hydrologic processes of the various dendritic watershed systems and USACEs' Hydrologic Engineering Center's River Analysis System hydraulic model was used for the two-dimensional unsteady flow flood calculations. Climate projections are based on recent global climate model simulations developed for the International Panel on Climate Change, Coupled Model Inter-comparison Project Phase 5. Hydrographs for frequent (high-recurrence interval) storms were derived from 30-year historical daily precipitation data and decadal projections for both time frames and RCP scenarios. Since the climate projections for each scenario only represented ten years of data, 100-year or 500-year storms cannot be derived. Hence, this novel approach of identifying frequent storms is used as an indicator to compare across the various time frames and climate scenarios. Hydrographs were used to generate inundation maps and results are used to identify vulnerabilities and formulate adaptation strategies to flooding at 43 locations worldwide.


Sign in / Sign up

Export Citation Format

Share Document