scholarly journals Increase in ocean acidity variability and extremes under increasing atmospheric CO<sub>2</sub>

2020 ◽  
Vol 17 (18) ◽  
pp. 4633-4662 ◽  
Author(s):  
Friedrich A. Burger ◽  
Jasmin G. John ◽  
Thomas L. Frölicher

Abstract. Ocean acidity extreme events are short-term periods of relatively high [H+] concentrations. The uptake of anthropogenic CO2 emissions by the ocean is expected to lead to more frequent and intense ocean acidity extreme events, not only due to changes in the long-term mean but also due to changes in short-term variability. Here, we use daily mean output from a five-member ensemble simulation of a comprehensive Earth system model under low- and high-CO2-emission scenarios to quantify historical and future changes in ocean acidity extreme events. When defining extremes relative to a fixed preindustrial baseline, the projected increase in mean [H+] causes the entire surface ocean to reach a near-permanent acidity extreme state by 2030 under both the low- and high-CO2-emission scenarios. When defining extremes relative to a shifting baseline (i.e., neglecting the changes in mean [H+]), ocean acidity extremes are also projected to increase because of the simulated increase in [H+] variability; e.g., the number of days with extremely high surface [H+] conditions is projected to increase by a factor of 14 by the end of the 21st century under the high-CO2-emission scenario relative to preindustrial levels. Furthermore, the duration of individual extreme events is projected to triple, and the maximal intensity and the volume extent in the upper 200 m are projected to quintuple. Similar changes are projected in the thermocline. Under the low-emission scenario, the increases in ocean acidity extreme-event characteristics are substantially reduced. At the surface, the increases in [H+] variability are mainly driven by increases in [H+] seasonality, whereas changes in thermocline [H+] variability are more influenced by interannual variability. Increases in [H+] variability arise predominantly from increases in the sensitivity of [H+] to variations in its drivers (i.e., carbon, alkalinity, and temperature) due to the increase in oceanic anthropogenic carbon. The projected increase in [H+] variability and extremes may enhance the risk of detrimental impacts on marine organisms, especially for those that are adapted to a more stable environment.

2020 ◽  
Author(s):  
Friedrich A. Burger ◽  
Thomas L. Frölicher ◽  
Jasmin G. John

Abstract. Ocean acidity extreme events are short-term periods of extremely high [H+] concentrations. The uptake of anthropogenic CO2 emissions by the ocean is expected to lead to more frequent and intense ocean acidity extreme events, not only due to mean ocean acidification, but also due to increases in ocean acidity variability. Here, we use daily output from ensemble simulations of a comprehensive Earth system model under a low and high CO2 emission scenario to isolate and quantify the impact of changes in variability on changes in ocean acidity extremes. We show that the number of days with extreme [H+] conditions for surface waters is projected to increase by a factor of 14 by the end of the 21st century under a high CO2 emission scenario relative to preindustrial levels. The duration of individual events is projected to triple, and the maximal intensity and the volume extent in the upper 200 m to quintuple. Similar changes are projected in the thermocline. At surface, the changes are mainly driven by increases in [H+] seasonality, whereas changes in interannual variability are also important in the thermocline. Increases in [H+] variability and extremes arise predominantly from increases in the sensitivity of [H+] to variations in its drivers. In contrast to [H+] extremes, the occurrence of short-term extremes in low aragonite saturation state due to changes in variability is projected to decrease. An increase in [H+] variability and an associated increase in extreme events superimposed onto the long-term ocean acidification trend will enhance the risk of severe and detrimental impacts on marine organisms, especially for those that are adapted to a more stable environment.


2013 ◽  
Vol 27 (2) ◽  
pp. 111
Author(s):  
Siti Badriyah Rushayati ◽  
Rachmad Hermawan

DKI Jakarta area with high CO2 emission and 84,95 % of  built-up areas (year of 2009) cause urban heat island (UHI).  To overcome UHI problems, its characteristics must be known.  Trend analysis of surface temperature areas was conducted by comparison of surface temperature  spatial distribution of 2006 with 2010.  UHI analysis based on geograpical coordinates were also conducted.  High surface temperature of > 34 ºC was on inner city and decreasing to sub urban area.  High surface temperature were especially on high density bulit-up areas. Priority of  solving UHI problems are conducted on high surface temperature areas.


2015 ◽  
Vol 6 (2) ◽  
pp. 2043-2062
Author(s):  
W. Weber ◽  
H.-J. Lüdecke ◽  
C. O. Weiss

Abstract. From basic physical assumptions we derive a simple linear model of the global CO2 cycle without free parameters. It yields excellent agreement with the observations reported by the carbon dioxide information analysis center (CDIAC) as time series of atmospheric CO2 growth, of sinks in the ocean and of absorption by the biosphere. The agreement extends from the year 1850 until present (2013). Based on anthropogenic CO2 emission scenarios until 2150, future atmospheric CO2 concentrations are calculated. As the model shows, and depending on the emission scenario, the airborne fraction of CO2 begins to decrease in the year ~ 2050 and becomes negative at the latest in ~ 2130. At the same time the concentration of the atmospheric CO2 will reach a maximum between ~ 500 and ~ 900 ppm. As a consequence, increasing anthropogenic CO2 emissions will make the ocean and the biosphere the main reservoirs of anthropogenic CO2 in the long run. Latest in about 150 years, anthropogenic CO2 emission will no longer increase the CO2 content of the atmosphere.


1984 ◽  
Vol 16 (8-9) ◽  
pp. 311-325 ◽  
Author(s):  
N B Johansen ◽  
P Harremoës ◽  
M Jensen

Overflow from combined systems constitute an increasing source of pollution of receiving waters, as compared to daily wastewater discharges which undergo treatment to a still higher extent. The receiving water problems from overflows are significant both in a long term scale (mean annual load) and in a short term scale (extreme event load). A method for computation of both annual and extreme load is presented. It is based on historical rain series and the use of a time-area model and simple pollutant mixing model in runoff calculation. Statistical calculations for both mean annual load and extreme events have been applied to the computed overflow series. Based on the computerized method simple manual calculations methods have been developed, resulting in graphs and tables for annual load and extreme load.


Author(s):  
Walter Leal Filho ◽  
Abul Al-Amin ◽  
Gustavo Nagy ◽  
Ulisses Azeiteiro ◽  
Laura Wiesböck ◽  
...  

There are various climate risks that are caused or influenced by climate change. They are known to have a wide range of physical, economic, environmental and social impacts. Apart from damages to the physical environment, many climate risks (climate variability, extreme events and climate-related hazards) are associated with a variety of impacts on human well-being, health, and life-supporting systems. These vary from boosting the proliferation of vectors of diseases (e.g., mosquitos), to mental problems triggered by damage to properties and infrastructure. There is a great variety of literature about the strong links between climate change and health, while there is relatively less literature that specifically examines the health impacts of climate risks and extreme events. This paper is an attempt to address this knowledge gap, by compiling eight examples from a set of industrialised and developing countries, where such interactions are described. The policy implications of these phenomena and the lessons learned from the examples provided are summarised. Some suggestions as to how to avert the potential and real health impacts of climate risks are made, hence assisting efforts to adapt to a problem whose impacts affect millions of people around the world. All the examples studied show some degree of vulnerability to climate risks regardless of their socioeconomic status and need to increase resilience against extreme events.


2021 ◽  
Vol 54 (10) ◽  
pp. 1564-1574
Author(s):  
L. G. Sokolova ◽  
S. Yu. Zorina ◽  
E. N. Belousova ◽  
A. V. Pomortsev ◽  
N. V. Dorofeev

2011 ◽  
Vol 11 (9) ◽  
pp. 2463-2468 ◽  
Author(s):  
Y. Tramblay ◽  
L. Neppel ◽  
J. Carreau

Abstract. In Mediterranean regions, climate studies indicate for the future a possible increase in the extreme rainfall events occurrence and intensity. To evaluate the future changes in the extreme event distribution, there is a need to provide non-stationary models taking into account the non-stationarity of climate. In this study, several climatic covariates are tested in a non-stationary peaks-over-threshold modeling approach for heavy rainfall events in Southern France. Results indicate that the introduction of climatic covariates could improve the statistical modeling of extreme events. In the case study, the frequency of southern synoptic circulation patterns is found to improve the occurrence process of extreme events modeled via a Poisson distribution, whereas for the magnitude of the events, the air temperature and sea level pressure appear as valid covariates for the Generalized Pareto distribution scale parameter. Covariates describing the humidity fluxes at monthly and seasonal time scales also provide significant model improvements for the occurrence and the magnitude of heavy rainfall events. With such models including climatic covariates, it becomes possible to asses the risk of extreme events given certain climatic conditions at monthly or seasonal timescales. The future changes in the heavy rainfall distribution can also be evaluated using covariates computed by climate models.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245929
Author(s):  
Victoria T. González ◽  
Bente Lindgård ◽  
Rigmor Reiersen ◽  
Snorre B. Hagen ◽  
Kari Anne Bråthen

Climate change is expected to increase the frequency and intensity of extreme events in northern ecosystems. The outcome of these events across the landscape, might be mediated by species effects, such as niche construction, with likely consequences on vegetation resilience. To test this hypothesis, we simulated an extreme event by removing aboveground vegetation in tundra heathlands dominated by the allelopathic dwarf shrub Empetrum nigrum, a strong niche constructor. We tested the hypothesis under different climate regimes along a 200-km long gradient from oceanic to continental climate in Northern Norway. We studied the vegetation recovery process over ten years along the climatic gradient. The recovery of E. nigrum and subordinate species was low and flattened out after five years at all locations along the climatic gradient, causing low vegetation cover at the end of the study in extreme event plots. Natural seed recruitment was low at all sites, however, the addition of seeds from faster growing species did not promote vegetation recovery. A soil bioassay from 8 years after the vegetation was removed, suggested the allelopathic effect of E. nigrum was still present in the soil environment. Our results provide evidence of how a common niche constructor species can dramatically affect ecosystem recovery along a climatic gradient after extreme events in habitats where it is dominant. By its extremely slow regrowth and it preventing establishment of faster growing species, this study increases our knowledge on the possible outcomes when extreme events harm niche constructors in the tundra.


2021 ◽  
Vol 13 (20) ◽  
pp. 11278
Author(s):  
Drault Fabien ◽  
Youssef Snoussi ◽  
Ivaldo Itabaiana ◽  
Robert Wojcieszak

The high life expectancy of the world population provokes increase in demand for food and energy. As a result, the intense industrialization and the application of fossil sources is responsible for high levels of CO2 emission and waste generation. To mitigate the CO2 emission a practical solution at the very short term is urgently needed. The capture of CO2 and its application in chemical processes for the valorization of residual biomass are of great importance nowadays. The application of CO2 in the selective carboxylation of furoic acid for the production of 2,5-furandicarboxylic acid (FDCA), a bio-based monomer, has been an important step towards obtaining biopolymers to replace petroleum-based plastics such as polyethylene terephthalate (PET). In this project report, we discuss on the current challenges for obtaining the 2,5-FDCA precursor from the furfural in two main routes involving oxidation and carboxylation via heterogeneous catalysis. We present the main objectives and discuss the importance of this research for the development of more sustainable processes.


Sign in / Sign up

Export Citation Format

Share Document