scholarly journals Mg∕Ca, Sr∕Ca and stable isotopes from the planktonic foraminifera <i>T. sacculifer</i>: testing a multi-proxy approach for inferring paleotemperature and paleosalinity

2021 ◽  
Vol 18 (2) ◽  
pp. 423-439
Author(s):  
Delphine Dissard ◽  
Gert Jan Reichart ◽  
Christophe Menkes ◽  
Morgan Mangeas ◽  
Stephan Frickenhaus ◽  
...  

Abstract. Over the last decades, sea surface temperature (SST) reconstructions based on the Mg∕Ca of foraminiferal calcite have frequently been used in combination with the δ18O signal from the same material to provide estimates of the δ18O of water (δ18Ow), a proxy for global ice volume and sea surface salinity (SSS). However, because of error propagation from one step to the next, better calibrations are required to increase the accuracy and robustness of existing isotope and element to temperature proxy relationships. Towards that goal, we determined Mg∕Ca, Sr∕Ca and the oxygen isotopic composition of Trilobatus sacculifer (previously referenced as Globigerinoides sacculifer) collected from surface waters (0–10 m) along a north–south transect in the eastern basin of the tropical and subtropical Atlantic Ocean. We established a new paleotemperature calibration based on Mg∕Ca and on the combination of Mg∕Ca and Sr∕Ca. Subsequently, a sensitivity analysis was performed in which one, two or three different equations were considered. Results indicate that foraminiferal Mg∕Ca allows for an accurate reconstruction of surface water temperature. Combining equations, δ18Ow can be reconstructed with a precision of about ± 0.5 ‰. However, the best possible salinity reconstruction based on locally calibrated equations only allowed for a reconstruction with an uncertainty of ± 2.49. This was confirmed by a Monte Carlo simulation, applied to test successive reconstructions in an “ideal case” in which explanatory variables are known. This simulation shows that from a purely statistical point of view, successive reconstructions involving Mg∕Ca and δ18Oc preclude salinity reconstructions with a precision better than ± 1.69 and hardly better than ± 2.65 due to error propagation. Nevertheless, a direct linear fit to reconstruct salinity based on the same measured variables (Mg∕Ca and δ18Oc) was established. This direct reconstruction of salinity led to a much better estimation of salinity (± 0.26) than the successive reconstructions.

2020 ◽  
Author(s):  
Delphine Dissard ◽  
Gert Jan Reichart ◽  
Christophe Menkes ◽  
Morgan Mangeas ◽  
Stephan Frickenhaus ◽  
...  

Abstract. Over the last decades, sea surface temperature (SST) reconstructions based on the Mg/Ca of foraminiferal calcite have frequently been used in combination with the δ18O signal from the same material, to provide estimates of δ18O of the water (δ18Ow), a proxy for global ice volume and sea surface salinity (SSS). However, because of error propagation from one step to the next, better calibrations are required to increase accuracy and robustness of existing isotope and element to temperature proxy-relationships. Towards that goal, we determined Mg/Ca, Sr/Ca and the oxygen isotopic composition of Trilobatus sacculifer (previously referenced as Globigerinoides sacculifer), collected from surface waters (0–10 m), along a North-South transect in the eastern basin of the tropical/subtropical Atlantic Ocean. We established a new paleo-temperature calibration based on Mg/Ca, and on the combination of Mg/Ca and Sr/Ca. Subsequently, a sensitivity analysis was performed in which, one, two, or three different equations were considered. Results indicate that foraminiferal Mg/Ca allow for an accurate reconstruction of surface water temperature. Combining equations, δ18Ow can be reconstructed with a precision of about ± 0.5 ‰. However, the best possible salinity reconstruction based on locally calibrated equations, only allowed reconstruction with an uncertainty of ± 2.49. This was confirmed by a Monte Carlo simulation, applied to test successive reconstructions in an ideal case, where explanatory variables are known. This simulation shows that from a pure statistical point of view, successive reconstructions involving Mg/Ca and δ18Oc preclude salinity reconstruction with a precision better than ± 1.69 and hardly better than ± 2.65, due to error propagation. Nevertheless, a direct linear fit to reconstruct salinity based on the same measured variables (Mg/Ca and δ18Oc) was established. This direct reconstruction of salinity lead to a much better estimation of salinity (± 0.26) than the successive reconstructions.


2010 ◽  
Vol 6 (3) ◽  
pp. 1229-1265
Author(s):  
S. Sepulcre ◽  
L. Vidal ◽  
K. Tachikawa ◽  
F. Rostek ◽  
E. Bard

Abstract. This study aimed at documenting climate changes in tropical area in response to the Mid-Pleistocene Transition (MPT) by reconstructing past hydrologic variations in the Northern Caribbean Sea and its influence on the stability of the Atlantic Meridional Overturning Circulation (AMOC) during the last 940 kyr. Using core MD03-2628, we estimated past changes in sea surface salinity (SSS) using Δδ18O, the difference between the modern and the past δ18O of seawater (obtained by combining alkenone thermometer data with the δ18O of the planktonic foraminifera Globigerinoides ruber (white) and corrected for ice-sheet volume effects). Today, the lowest SSS values in the studied area are associated with the northernmost location of the Inter-Tropical Convergence Zone (ITCZ). The Δδ18O record exhibits glacial/interglacial cyclicity with higher values during all glacial periods spanning the last 940 kyr, indicating increased SSS. At a longer timescale, the Δδ18O exhibits a shift toward lower values for interglacial periods during the last 450 kyr, when compared to interglacial stages older than 650 kyr. A rise in SSS during glacial stages may be related to the southernmost location of the ITCZ, which is induced by a steeper interhemispheric temperature gradient and associated with reduced northward cross equatorial oceanic transport. Therefore, the results suggest a permanent link between the tropical salinity budget and the AMOC during the last 940 kyr. Following the MPT, lower salinities during the last five interglacial stages indicate a northernmost ITCZ location, forced by changes in the interhemispheric temperature gradient that is associated with the poleward position of Southern Oceanic Fronts that amplified the transport of heat and moisture to the North Atlantic. These processes may have contributed to amplification of the climate cycles that followed the MPT.


2014 ◽  
Vol 10 (1) ◽  
pp. 251-260 ◽  
Author(s):  
S. Kasper ◽  
M. T. J. van der Meer ◽  
A. Mets ◽  
R. Zahn ◽  
J. S. Sinninghe Damsté ◽  
...  

Abstract. At the southern tip of Africa, the Agulhas Current reflects back into the Indian Ocean causing so-called "Agulhas rings" to spin off and release relatively warm and saline water into the South Atlantic Ocean. Previous reconstructions of the dynamics of the Agulhas Current, based on paleo-sea surface temperature and sea surface salinity proxies, inferred that Agulhas leakage from the Indian Ocean to the South Atlantic was reduced during glacial stages as a consequence of shifted wind fields and a northwards migration of the subtropical front. Subsequently, this might have led to a buildup of warm saline water in the southern Indian Ocean. To investigate this latter hypothesis, we reconstructed sea surface salinity changes using alkenone δD, and paleo-sea surface temperature using TEXH86 and UK'37, from two sediment cores (MD02-2594, MD96-2080) located in the Agulhas leakage area during Termination I and II. Both UK'37 and TEXH86 temperature reconstructions indicate an abrupt warming during the glacial terminations, while a shift to more negative δDalkenone values of approximately 14‰ during glacial Termination I and II is also observed. Approximately half of the isotopic shift can be attributed to the change in global ice volume, while the residual isotopic shift is attributed to changes in salinity, suggesting relatively high salinities at the core sites during glacials, with subsequent freshening during glacial terminations. Approximate estimations suggest that δDalkenone represents a salinity change of ca. 1.7–1.9 during Termination I and Termination II. These estimations are in good agreement with the proposed changes in salinity derived from previously reported combined planktonic Foraminifera δ18O values and Mg/Ca-based temperature reconstructions. Our results confirm that the δD of alkenones is a potentially suitable tool to reconstruct salinity changes independent of planktonic Foraminifera δ18O.


2013 ◽  
Vol 9 (3) ◽  
pp. 3209-3238 ◽  
Author(s):  
S. Kasper ◽  
M. T. J. van der Meer ◽  
A. Mets ◽  
R. Zahn ◽  
J. S. Sinninghe Damsté ◽  
...  

Abstract. At the southern tip of the African shelf, the Agulhas Current reflects back into the Indian Ocean causing so called "Agulhas rings" to spin off and release relatively warm and saline water into the South Atlantic Ocean. Previous reconstructions of the dynamics of the Agulhas current, based on paleo sea surface temperature and sea surface salinity proxies, inferred that Agulhas leakage from the Indian Ocean to the South Atlantic is reduced as a consequence of changes in wind fields related to a northwards migration of ice masses and the subtropical front during glacial stages. Subsequently, this might have led to a build-up of warm saline water in the southern Indian Ocean. To investigate this latter hypothesis, we reconstructed sea surface salinity changes using alkenone δ D, and paleo sea surface temperature using TEXH86 and UK'37, from two sediment cores (MD02-2594, MD96-2080) located in the Agulhas leakage area during Termination I and II. Both UK'37 and TEXH86 temperature reconstructions infer an abrupt warming during the glacial terminations, which is different from the gradual warming trend previously reconstructed based on Mg/Ca ratios of Globigerina bulloides. These differences in temperature reconstructions might be related to differences in the growth season or depth habitat between organisms. A shift to more negative δ Dalkenone values of approximately 14‰ during glacial Termination I and approximately 13‰ during Termination II is also observed. Approximately half of these shifts can be attributed to the change in global ice volume, while the residual isotopic shift is attributed to changes in salinity, suggesting relatively high salinities at the core sites during glacials, with subsequent freshening during glacial terminations. Approximate estimations suggest that δ Dalkenone represents a salinity change of ca. 1.7–2 during Termination I and ca. 1.5–1.7 during Termination II. These estimations are in good agreement with the proposed changes in salinity derived from previously reported combined planktonic foraminifera δ18O values and Mg/Ca-based temperature reconstructions. Our results show that the δ D of alkenones is a potentially suitable tool to reconstruct salinity changes independent of planktonic foraminifera δ18O.


2011 ◽  
Vol 7 (1) ◽  
pp. 75-90 ◽  
Author(s):  
S. Sepulcre ◽  
L. Vidal ◽  
K. Tachikawa ◽  
F. Rostek ◽  
E. Bard

Abstract. By reconstructing past hydrologic variations in the Northern Caribbean Sea and their influence on the stability of the Atlantic Meridional Overturning Circulation (AMOC) during the last 940 ka, we seek to document climate changes in this tropical area in response to the Mid-Pleistocene Transition (MPT). Using core MD03-2628, we estimated past changes in sea surface salinity (SSS) using Δδ18O, the difference between the modern, and the past δ18O of seawater (obtained by combining alkenone thermometer data with the δ18O of the planktonic foraminifera Globigerinoides rube (white) and corrected for ice-sheet volume effects). Today, the lowest SSS values in the area studied are associated with the northernmost location of the Inter-Tropical Convergence Zone (ITCZ). The Δδ18O record obtained from core MD03-2628 exhibits glacial/interglacial cyclicity with higher values during all glacial periods spanning the last 940 ka, indicating increased SSS. A long-term trend was also observed in the Δδ18O values that exhibited a shift toward lower values for interglacial periods during the last 450 ka, as compared to interglacial stages older than 650 ka. A rise in SSS during glacial stages may be related to the southernmost location of the ITCZ, which is induced by a steeper cross-equator temperature gradient and associated with reduced northward cross-equatorial oceanic transport. Therefore, the results suggest a permanent link between the tropical salinity budget and the AMOC during the last 940 ka. Following the MPT, lower salinities during the last five interglacial stages indicated a northernmost ITCZ location that was forced by changes in the cross-equator temperature gradient and that was associated with the poleward position of Southern Oceanic Fronts that amplify the transport of heat and moisture to the North Atlantic. These processes may have contributed to the amplification of the climate cycles that followed the MPT.


2021 ◽  
Vol 13 (15) ◽  
pp. 2995
Author(s):  
Frederick M. Bingham ◽  
Severine Fournier ◽  
Susannah Brodnitz ◽  
Karly Ulfsax ◽  
Hong Zhang

Sea surface salinity (SSS) satellite measurements are validated using in situ observations usually made by surfacing Argo floats. Validation statistics are computed using matched values of SSS from satellites and floats. This study explores how the matchup process is done using a high-resolution numerical ocean model, the MITgcm. One year of model output is sampled as if the Aquarius and Soil Moisture Active Passive (SMAP) satellites flew over it and Argo floats popped up into it. Statistical measures of mismatch between satellite and float are computed, RMS difference (RMSD) and bias. The bias is small, less than 0.002 in absolute value, but negative with float values being greater than satellites. RMSD is computed using an “all salinity difference” method that averages level 2 satellite observations within a given time and space window for comparison with Argo floats. RMSD values range from 0.08 to 0.18 depending on the space–time window and the satellite. This range gives an estimate of the representation error inherent in comparing single point Argo floats to area-average satellite values. The study has implications for future SSS satellite missions and the need to specify how errors are computed to gauge the total accuracy of retrieved SSS values.


2021 ◽  
Vol 13 (3) ◽  
pp. 420
Author(s):  
Jingru Sun ◽  
Gabriel Vecchi ◽  
Brian Soden

Multi-year records of satellite remote sensing of sea surface salinity (SSS) provide an opportunity to investigate the climatological characteristics of the SSS response to tropical cyclones (TCs). In this study, the influence of TC winds, rainfall and preexisting ocean stratification on SSS evolution is examined with multiple satellite-based and in-situ data. Global storm-centered composites indicate that TCs act to initially freshen the ocean surface (due to precipitation), and subsequently salinify the surface, largely through vertical ocean processes (mixing and upwelling), although regional hydrography can lead to local departure from this behavior. On average, on the day a TC passes, a strong SSS decrease is observed. The fresh anomaly is subsequently replaced by a net surface salinification, which persists for weeks. This salinification is larger on the right (left)-hand side of the storm motion in the Northern (Southern) Hemisphere, consistent with the location of stronger turbulent mixing. The influence of TC intensity and translation speed on the ocean response is also examined. Despite having greater precipitation, stronger TCs tend to produce longer-lasting, stronger and deeper salinification especially on the right-hand side of the storm motion. Faster moving TCs are found to have slightly weaker freshening with larger area coverage during the passage, but comparable salinification after the passage. The ocean haline response in four basins with different climatological salinity stratification reveals a significant impact of vertical stratification on the salinity response during and after the passage of TCs.


2021 ◽  
Vol 13 (5) ◽  
pp. 831
Author(s):  
Jorge Vazquez-Cuervo ◽  
Chelle Gentemann ◽  
Wenqing Tang ◽  
Dustin Carroll ◽  
Hong Zhang ◽  
...  

The Arctic Ocean is one of the most important and challenging regions to observe—it experiences the largest changes from climate warming, and at the same time is one of the most difficult to sample because of sea ice and extreme cold temperatures. Two NASA-sponsored deployments of the Saildrone vehicle provided a unique opportunity for validating sea-surface salinity (SSS) derived from three separate products that use data from the Soil Moisture Active Passive (SMAP) satellite. To examine possible issues in resolving mesoscale-to-submesoscale variability, comparisons were also made with two versions of the Estimating the Circulation and Climate of the Ocean (ECCO) model (Carroll, D; Menmenlis, D; Zhang, H.). The results indicate that the three SMAP products resolve the runoff signal associated with the Yukon River, with high correlation between SMAP products and Saildrone SSS. Spectral slopes, overall, replicate the −2.0 slopes associated with mesoscale-submesoscale variability. Statistically significant spatial coherences exist for all products, with peaks close to 100 km. Based on these encouraging results, future research should focus on improving derivations of satellite-derived SSS in the Arctic Ocean and integrating model results to complement remote sensing observations.


2021 ◽  
Vol 13 (4) ◽  
pp. 811
Author(s):  
Hao Liu ◽  
Zexun Wei

The variability in sea surface salinity (SSS) on different time scales plays an important role in associated oceanic or climate processes. In this study, we compare the SSS on sub-annual, annual, and interannual time scales among ten datasets, including in situ-based and satellite-based SSS products over 2011–2018. Furthermore, the dominant mode on different time scales is compared using the empirical orthogonal function (EOF). Our results show that the largest spread of ten products occurs on the sub-annual time scale. High correlation coefficients (0.6~0.95) are found in the global mean annual and interannual SSSs between individual products and the ensemble mean. Furthermore, this study shows good agreement among the ten datasets in representing the dominant mode of SSS on the annual and interannual time scales. This analysis provides information on the consistency and discrepancy of datasets to guide future use, such as improvements to ocean data assimilation and the quality of satellite-based data.


2013 ◽  
Vol 26 (4) ◽  
pp. 1249-1267 ◽  
Author(s):  
Chunzai Wang ◽  
Liping Zhang ◽  
Sang-Ki Lee

Abstract The response of freshwater flux and sea surface salinity (SSS) to the Atlantic warm pool (AWP) variations from seasonal to multidecadal time scales is investigated by using various reanalysis products and observations. All of the datasets show a consistent response for all time scales: A large (small) AWP is associated with a local freshwater gain (loss) to the ocean, less (more) moisture transport across Central America, and a local low (high) SSS. The moisture budget analysis demonstrates that the freshwater change is dominated by the atmospheric mean circulation dynamics, while the effect of thermodynamics is of secondary importance. Further decomposition points out that the contribution of the mean circulation dynamics primarily arises from its divergent part, which mainly reflects the wind divergent change in the low level as a result of SST change. In association with a large (small) AWP, warmer (colder) than normal SST over the tropical North Atlantic can induce anomalous low-level convergence (divergence), which favors anomalous ascent (decent) and thus generates more (less) precipitation. On the other hand, a large (small) AWP weakens (strengthens) the trade wind and its associated westward moisture transport to the eastern North Pacific across Central America, which also favors more (less) moisture residing in the Atlantic and hence more (less) precipitation. The results imply that variability of freshwater flux and ocean salinity in the North Atlantic associated with the AWP may have the potential to affect the Atlantic meridional overturning circulation.


Sign in / Sign up

Export Citation Format

Share Document