scholarly journals Hotspots of tropical land use emissions: patterns, uncertainties, and leading emission sources for the period 2000–2005

2016 ◽  
Author(s):  
Rosa Maria Roman-Cuesta ◽  
Mariana C. Rufino ◽  
Martin Herold ◽  
Klaus Butterbach-Bahl ◽  
Todd S. Rosenstock ◽  
...  

Abstract. According to the latest report of the Intergovernmental Panel on Climate Change (IPCC), emissions must be cut by 41–72 % below 2010 levels by 2050 for a likely chance of containing the global mean temperature increase to 2 °C. The AFOLU sector (Agriculture, Forestry and Other Land Use) roughly contributes with a quarter (~ 10–12 PgCO2e.yr−1) of the net anthropogenic GHG emissions mainly from deforestation, fire, wood harvesting, and agricultural emissions including croplands, paddy rice and livestock. In spite of the importance of this sector, it is unclear where are the regions in the planet with AFOLU emissions hotspots, and how uncertain these emissions are. Here we present a novel spatially comparable dataset containing annual mean estimates of gross AFOLU emissions (CO2, CH4, N2O), associated uncertainties, and leading emission sources, in a spatially disaggregated manner (0.5°), for the tropics, for the period 2000–2005. Our data highlight: i) the existence of AFOLU emissions hotspots on all continents, with particular importance of evergreen rainforest deforestation in Central and South America, fire in dry forests in Africa, and both peatland emissions and agriculture in Asia; ii) a predominant contribution of forests and CO2 to the total AFOLU emissions (75 %) and to their uncertainties (98 %), iii) higher gross fluxes from forests coincide with higher uncertainties, making agricultural hotspots more appealing for effective mitigation action, and iv) a lower contribution of non-CO2 agricultural emissions to the total gross budget (ca. 25 %) with livestock (15.5 %) and rice (7 %) leading the emissions. Gross AFOLU tropical emissions 8.2 (5.5–12.2) were in the range of other databases 8.4 and 8.0 PgCO2e.yr−1 (FAOSTAT and EDGAR respectively), but we offer a spatially detailed benchmark for monitoring progress on reducing emissions from the land sector in the tropics. The location of the AFOLU hotspots of emissions and data on their associated uncertainties, will assist national policy makers, investors and other decision-makers who seek to understand the mitigation potential of the AFOLU sector.

2016 ◽  
Vol 13 (14) ◽  
pp. 4253-4269 ◽  
Author(s):  
Rosa Maria Roman-Cuesta ◽  
Mariana C. Rufino ◽  
Martin Herold ◽  
Klaus Butterbach-Bahl ◽  
Todd S. Rosenstock ◽  
...  

Abstract. According to the latest report of the Intergovernmental Panel on Climate Change (IPCC), emissions must be cut by 41–72 % below 2010 levels by 2050 for a likely chance of containing the global mean temperature increase to 2 °C. The AFOLU sector (Agriculture, Forestry and Other Land Use) contributes roughly a quarter ( ∼  10–12 Pg CO2e yr−1) of the net anthropogenic GHG emissions mainly from deforestation, fire, wood harvesting, and agricultural emissions including croplands, paddy rice, and livestock. In spite of the importance of this sector, it is unclear where the regions with hotspots of AFOLU emissions are and how uncertain these emissions are. Here we present a novel, spatially comparable dataset containing annual mean estimates of gross AFOLU emissions (CO2, CH4, N2O), associated uncertainties, and leading emission sources, in a spatially disaggregated manner (0.5°) for the tropics for the period 2000–2005. Our data highlight the following: (i) the existence of AFOLU emissions hotspots on all continents, with particular importance of evergreen rainforest deforestation in Central and South America, fire in dry forests in Africa, and both peatland emissions and agriculture in Asia; (ii) a predominant contribution of forests and CO2 to the total AFOLU emissions (69 %) and to their uncertainties (98 %); (iii) higher gross fluxes from forests, which coincide with higher uncertainties, making agricultural hotspots appealing for effective mitigation action; and (iv) a lower contribution of non-CO2 agricultural emissions to the total gross emissions (ca. 25 %), with livestock (15.5 %) and rice (7 %) leading the emissions. Gross AFOLU tropical emissions of 8.0 (5.5–12.2) were in the range of other databases (8.4 and 8.0 Pg CO2e yr−1 in FAOSTAT and the Emissions Database for Global Atmospheric Research (EDGAR) respectively), but we offer a spatially detailed benchmark for monitoring progress in reducing emissions from the land sector in the tropics. The location of the AFOLU hotspots of emissions and data on their associated uncertainties will assist national policy makers, investors, and other decision-makers who seek to understand the mitigation potential of the AFOLU sector.


2016 ◽  
Author(s):  
Rosa Maria Roman-Cuesta ◽  
Martin Herold ◽  
Mariana C. Rufino ◽  
Todd S. Rosenstock ◽  
Richard A. Houghton ◽  
...  

Abstract. The Agriculture, Forestry and Other Land Use (AFOLU) sector contributes with ca. 20–25 % of global anthropogenic emissions (2010), making it a key component of any climate change mitigation strategy. AFOLU estimates remain, however, highly uncertain, jeopardizing the mitigation effectiveness of this sector. Global comparisons of AFOLU emissions have shown divergences of up to 25 %, urging for improved understanding on the reasons behind these differences. Here we compare a diversity of AFOLU emission datasets (e.g. FAOSTAT, EDGAR, the newly developed AFOLU "Hotspots", "Houghton", "Baccini", and EPA) and estimates given in the Fifth Assessment Report, for the tropics (2000–2005), to identify plausible explanations for the differences in: i) aggregated gross AFOLU emissions, and ii) disaggregated emissions by sources, and by gases (CO2, CH4, N2O). We also aim to iii) identify countries with low agreement among AFOLU datasets, to navigate research efforts. Aggregated gross emissions were similar for all databases for the AFOLU: 8.2 (5.5–12.2), 8.4 and 8.0 Pg CO2e. yr−1 (Hotspots, FAOSTAT and EDGAR respectively), Forests: 6.0 (3.8–10), 5.9, 5.9 and 5.4 Pg CO2e. yr−1 (Hotspots, FAOSTAT, EDGAR, and Houghton), and Agricultural sectors: 1.9 (1.5–2.5), 2.0, 2.1, and 2.0 Pg CO2e. yr−1 (Hotspots, FAOSTAT, EDGAR, and EPA). However, this agreement was lost when disaggregating by sources, continents, and gases, particularly for the forest sector (fire leading the differences). Agricultural emissions were more homogeneous, especially livestock, while croplands were the most diverse. CO2 showed the largest differences among datasets. Cropland soils and enteric fermentation led the smaller N2O and CH4 differences. Disagreements are explained by differences in conceptual frameworks (e.g. carbon-only vs multi-gas assessments, definitions, land use versus land cover, etc), in methods (Tiers, scales, compliance with Intergovernmental Panel on Climate Change (IPCC) guidelines, legacies, etc) and in assumptions (e.g. carbon neutrality of certain emissions, instantaneous emissions release, etc) that call for more complete and transparent documentation for all the available datasets. Enhanced dialogue between the carbon (CO2) and the AFOLU (multi-gas) communities is needed to reduce discrepancies of land use estimates.


2021 ◽  
Vol 24 (1) ◽  
pp. 5-20
Author(s):  
Ramona Ionela Zgavarogea ◽  
Mihaela Iordache ◽  
Andreea Maria Iordache ◽  
Marius Constantinescu ◽  
Felicia Bucura ◽  
...  

This study aimed to analyze Romanian (RO) involvement in the LULUCF sector by considering the Intergovernmental Panel on Climate Change (IPCC) good practice guidance (GPG). Trends were assessed using the Mann-Kendall (MK) test for trend estimation to determine the total greenhouse gas (GHG) (GHGCO₂-eq.) emissions/ removals. The results emphasized the increasing average annual levels of emissions/removals in both the EU-28 and RO when the subperiods from 1990-2005 and 2005-2017 were analyzed. Kendall’s analysis of GHG removal showed a positive trend in Romanian GHG removals, and no trend was observed for the EU-28. In comparison, the emissions indicated an increasing trend for RO and a decreasing trend for the EU-28. The GHGCO₂-eq. generated by the LULUCF sector decreased to an average annual rate of 0.5% per year in the EU-28. In Romania, these emissions increased by approximately 0.2% per year on average. Between 1990 and 2017, the CO2 total absorption increased to 0.9% per year. The methane absorption also increased by 11.7% per year, and no significant increasing trend was observed for methane. The dynamics of GHGCO₂-eq. emissions/removals in RO and LULUCF sectors showed that settlement had decreased in wetlands, and settlement of other land areas had increased. Assessing GHG gas emissions is essential for allowing each sector to promote specific strategies, policies and action plans. This will improve the national-level monitoring of the LULUCF sector and make this information more accessible to decision makers by raising awareness of the Romanian position within the EU-28


Agriculture ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 133 ◽  
Author(s):  
Sanjutha Shanmugam ◽  
Ram Dalal ◽  
Hans Joosten ◽  
R. Raison ◽  
Goh Joo

The increasing global demand for vegetable oils has resulted in a significant increase in the area under oil palm in the tropics during the last couple of decades, and this is projected to increase further. The Roundtable on Sustainable Palm Oil discourages the conversion of peatlands to oil palm and rubber plantations. However, our understanding of the effects on soil organic carbon (SOC) stocks and associated greenhouse gas (GHG) emissions of land use conversion is incomplete, especially for mineral soils under primary forests, secondary forests, rubber and other perennial plantations in the tropics. In this review we synthesised information on SOC stocks and GHG emissions from tropical mineral soils under forest, oil palm and rubber plantations and other agroecosystems across the tropical regions. We found that the largest SOC losses occurred after land use conversion from primary forest to oil palm and rubber plantations. Secondary forest and pasture lands showed lower SOC losses as well as total GHG (CO2, N2O and CH4) emissions when converted to oil palm and rubber plantations. However, due to the limited data available on all three GHG emissions, there remains high uncertainty in GHG emissions estimates, and regional GHG accounting is more reliable. We recommend long-term monitoring of oil palm and other perennial plantations established on tropical mineral soils on different soil types and regions on SOC stock changes and total GHG emissions and evaluate appropriate management practices to optimise production and sustainable economic returns, and minimise environmental impact.


2009 ◽  
Vol 147 (4) ◽  
pp. 367-382 ◽  
Author(s):  
A. A. STEWART ◽  
S. M. LITTLE ◽  
K. H. OMINSKI ◽  
K. M. WITTENBERG ◽  
H. H. JANZEN

SUMMARYAs agriculture contributes about 0·08 of Canada's greenhouse gas (GHG) emissions, reducing agricultural emissions would significantly decrease total Canadian GHG output. Evaluating mitigation practices is not always easy because of the complexity of farming systems in which one change may affect many processes and associated emissions. The objective of the current study was to compare the effects of selected management practices on net whole-farm emissions, expressed in CO2equivalents (CO2e) from a beef production system, as estimated for hypothetical farms at four disparate locations in western Canada. Whole-farm emissions (t CO2e) per unit of protein output (t) of 11 management systems (Table 2) were compared for each farm using a model based, in part, on Intergovernmental Panel on Climate Change (IPCC) equations. Compared with the baseline management scenario, maintaining cattle on alfalfa-grass pastures showed the largest decrease (0·53–1·08 t CO2e/t protein) in emissions for all locations. Feeding lower quality forage over winter showed the greatest increase in emissions per unit protein on the southern Alberta (S.AB) and northern Alberta (N.AB) farms, with increases of 1·36 and 2·22 t CO2e/t protein, respectively. Eliminating the fertilization of forages resulted in the largest increase (4·20 t CO2e/t protein) in emissions per unit protein on the Saskatchewan (SK) farm, while reducing the fertilizer rate by half for all crops showed the largest increase (11·40 t CO2e/t protein) on the Manitoba (MB) farm. The findings, while approximate, illustrate the importance of considering all GHGs simultaneously, and show that practices which best reduce emissions may vary among locations. The findings also suggest merit in comparing emissions on the basis of CO2e per unit of protein exported off-farm, rather than on the basis of total CO2e or CO2e per hectare.


2020 ◽  
Vol 12 (6) ◽  
pp. 2423 ◽  
Author(s):  
Tzu-Ling Chen ◽  
Hao-Wei Chiu ◽  
Yu-Fang Lin

The Fifth Assessment Report released by the Intergovernmental Panel on Climate Change (IPCC AR5) revealed that the scale of greenhouse gas (GHG) emissions in Asian cities is similar to those from developed economies, which are driven predominantly by economic growth. Due to variations in geographic and climatic contexts, culture and religion, living style and travel behavior, governance and institutions, and a wide range of density and land use mixes, there are significant variations in urban form patterns across Western and Asian cities. This paper uses a systematic review, which is a critical interpretive synthesis methodology, to review keywords of studies related to urban form among East and Southeast Asian cities. From 3725 records identified through database searching, 213 studies were included in qualitative analysis. The results show that, although the population density in built-up areas is higher, annual population density is declining significantly in East and Southeast Asia. In addition, there are various kinds of land use mixes including horizontal, vertical, and temporal forms. As a whole, the inconsistencies of urban form characteristics exist not only between Western and Asian cities, but also among Asian cities. Serious population density decreases in Asian cities might indicate that they are undergoing similar urban development processes to those of Western cities. We should be aware of the potential lock-in trends of urban development patterns in Chinese and Southeast Asian cities.


2016 ◽  
Vol 13 (20) ◽  
pp. 5799-5819 ◽  
Author(s):  
Rosa Maria Roman-Cuesta ◽  
Martin Herold ◽  
Mariana C. Rufino ◽  
Todd S. Rosenstock ◽  
Richard A. Houghton ◽  
...  

Abstract. The Agriculture, Forestry and Other Land Use (AFOLU) sector contributes with ca. 20–25 % of global anthropogenic emissions (2010), making it a key component of any climate change mitigation strategy. AFOLU estimates, however, remain highly uncertain, jeopardizing the mitigation effectiveness of this sector. Comparisons of global AFOLU emissions have shown divergences of up to 25 %, urging for improved understanding of the reasons behind these differences. Here we compare a variety of AFOLU emission datasets and estimates given in the Fifth Assessment Report for the tropics (2000–2005) to identify plausible explanations for the differences in (i) aggregated gross AFOLU emissions, and (ii) disaggregated emissions by sources and gases (CO2, CH4, N2O). We also aim to (iii) identify countries with low agreement among AFOLU datasets to navigate research efforts. The datasets are FAOSTAT (Food and Agriculture Organization of the United Nations, Statistics Division), EDGAR (Emissions Database for Global Atmospheric Research), the newly developed AFOLU “Hotspots”, “Houghton”, “Baccini”, and EPA (US Environmental Protection Agency) datasets. Aggregated gross emissions were similar for all databases for the AFOLU sector: 8.2 (5.5–12.2), 8.4, and 8.0 Pg CO2 eq. yr−1 (for Hotspots, FAOSTAT, and EDGAR respectively), forests reached 6.0 (3.8–10), 5.9, 5.9, and 5.4 Pg CO2 eq. yr−1 (Hotspots, FAOSTAT, EDGAR, and Houghton), and agricultural sectors were with 1.9 (1.5–2.5), 2.5, 2.1, and 2.0 Pg CO2 eq. yr−1 (Hotspots, FAOSTAT, EDGAR, and EPA). However, this agreement was lost when disaggregating the emissions by sources, continents, and gases, particularly for the forest sector, with fire leading the differences. Agricultural emissions were more homogeneous, especially from livestock, while those from croplands were the most diverse. CO2 showed the largest differences among the datasets. Cropland soils and enteric fermentation led to the smaller N2O and CH4 differences. Disagreements are explained by differences in conceptual frameworks (carbon-only vs. multi-gas assessments, definitions, land use vs. land cover, etc.), in methods (tiers, scales, compliance with Intergovernmental Panel on Climate Change (IPCC) guidelines, legacies, etc.) and in assumptions (carbon neutrality of certain emissions, instantaneous emissions release, etc.) which call for more complete and transparent documentation for all the available datasets. An enhanced dialogue between the carbon (CO2) and the AFOLU (multi-gas) communities is needed to reduce discrepancies of land use estimates.


2017 ◽  
Vol 1 (2) ◽  
pp. 109-117
Author(s):  
Elvis Franklin Suebu ◽  
Joni Hermana ◽  
Rachmat Boedisantoso

Studying the right strategy in the implementation of the mitigation of GHG emission reduction in an effort to control climate change caused by deforestation and forest degradation (REDD +) in Papua Province is an important step that must be done. Emission levels in Papua Province in 2010 was dominated by forestry sub-sector and other land use in the amount of 639,818,463 Ton CO2eq or approximately 99.8% of total GHG emissions of 640,737,952.64 Ton CO2eq. To analyze the implementation strategy of mitigation (REDD +) then the calculation of the level of carbon emission must be done first. The calculation of carbon emissions for this sub-sector is done with reference to the method that has been developed by the IPCC GL-2006. Meanwhile, to sub-sectors of forestry and other land use the calculation use the historical and forward-looking approach. The level of carbon emissions from forestry sub-sector accounted for 921,779,031.23 Ton CO2eq (historical method) and 1,052,683,205.46 Ton CO2eq (forward-looking method) mitigation program at the end of 2020. Strategy of mitigation action program is for carbon uptake and carbon storage stabilization. The mitigation scenario for forestry sub-sector capable of reducing emissions by 552,303,873 Ton CO2eq or by 52.47% of the total cumulative emissions at the end of 2020 (forward-looking method).


Wetlands ◽  
2021 ◽  
Vol 41 (8) ◽  
Author(s):  
Andrea Bianchi ◽  
Tuula Larmola ◽  
Hanna Kekkonen ◽  
Sanna Saarnio ◽  
Kristiina Lång

AbstractClimate policies encourage the search for greenhouse gas (GHG) mitigation options in all economic sectors and peatland rewetting is one of the most efficient mitigation measures in agriculture and land use. The benefits shown in the national GHG inventories, however, depend not only on the actual mitigation actions on the ground but also how well the effects can be reported. Currently there are no specific emission factors for reporting GHG emissions from rewetted agricultural soils as the current emission factors are aggregated for several pre-rewetting land use types. Also, rewetting can aim at either restoration or different forms of paludiculture which may differ in their GHG profile and thus demand disaggregated emission factors. We compiled the current knowledge on GHG emissions on sites where rewetting has occurred on former agricultural peatland in temperate or boreal climate zones. The recent data suggest that on average the current emission factors for rewetting nutrient-rich sites published by the Intergovernmental Panel for Climate Change (IPCC) provide a good estimate for reporting emissions from rewetting in the temperate zone. However, the total GHG balances differed widely in restoration, Sphagnum farming and production of emergent plants in paludiculture and it is evident that disaggregated emission factors will be needed to improve the accuracy of reporting the effects of mitigation measures in the GHG inventories.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


Sign in / Sign up

Export Citation Format

Share Document