scholarly journals Diazotrophy as a key driver of the response of marine net primary productivity to climate change

2021 ◽  
Author(s):  
Laurent Bopp ◽  
Olivier Aumont ◽  
Lester Kwiatkowski ◽  
Corentin Clerc ◽  
Léonard Dupont ◽  
...  

Abstract. The impact of anthropogenic climate change on marine net primary production (NPP) is a reason for concern because changing NPP will have widespread consequences for marine ecosystems and their associated services. Projections by the current generation of Earth System Models have suggested decreases in global NPP in response to future climate change, albeit with very large uncertainties. Here, we make use of two versions of the Institut Pierre Simon Laplace Climate Model (IPSL-CM) that simulate divergent NPP responses to similar high-emission scenarios in the 21st century and identify nitrogen fixation as the main driver of these divergent NPP responses. Differences in the way N-fixation is parameterized in the marine biogeochemical component PISCES of the IPSL-CMs lead to N-fixation rates that are either stable or double over the course of the 21st century, resulting in decreasing or increasing global NPP, respectively. An evaluation of these 2 model versions does not help constrain future NPP projection uncertainties. However, the use of a more comprehensive version of PISCES, with variable nitrogen-to-phosphorus ratios as well as a revised parameterization of the temperature sensitivity of N-fixation, suggests only moderate changes of global-averaged N-fixation in the 21st century. This leads to decreasing global NPP, in line with the model-mean changes of a recent multi-model intercomparison. Lastly, despite contrasting trends in NPP, all our model versions simulate similar and significant reductions in planktonic biomass. This suggests that projected plankton biomass may be a much more robust indicator than NPP of the potential impact of anthropogenic climate change on marine ecosystems across model.

Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 397 ◽  
Author(s):  
Giovanni Sgubin ◽  
Didier Swingedouw ◽  
Iñaki García de Cortázar-Atauri ◽  
Nathalie Ollat ◽  
Cornelis van Leeuwen

A comprehensive analysis of all the possible impacts of future climate change is crucial for strategic plans of adaptation for viticulture. Assessments of future climate are generally based on the ensemble mean of state-of-the-art climate model projections, which prefigures a gradual warming over Europe for the 21st century. However, a few models project single or multiple O(10) year temperature drops over the North Atlantic due to a collapsing subpolar gyre (SPG) oceanic convection. The occurrence of these decadal-scale “cold waves” may have strong repercussions over the continent, yet their actual impact is ruled out in a multi-model ensemble mean analysis. Here, we investigate these potential implications for viticulture over Europe by coupling dynamical downscaled EUR-CORDEX temperature projections for the representative concentration pathways (RCP)4.5 scenario from seven different climate models—including CSIRO-Mk3-6-0 exhibiting a SPG convection collapse—with three different phenological models simulating the main developmental stages of the grapevine. The 21st century temperature increase projected by all the models leads to an anticipation of all the developmental stages of the grapevine, shifting the optimal region for a given grapevine variety northward, and making climatic conditions suitable for high-quality wine production in some European regions that are currently not. However, in the CSIRO-Mk3-6-0 model, this long-term warming trend is suddenly interrupted by decadal-scale cold waves, abruptly pushing the suitability pattern back to conditions that are very similar to the present. These findings are crucial for winemakers in the evaluation of proper strategies to face climate change, and, overall, provide additional information for long-term plans of adaptation, which, so far, are mainly oriented towards the possibility of continuous warming conditions.


Author(s):  
Sarah E Perkins-Kirkpatrick ◽  
Daithi Stone ◽  
Dann M. Mitchell ◽  
Suzanne M. Rosier ◽  
Andrew David King ◽  
...  

Abstract Investigations into the role of anthropogenic climate change in extreme weather events are now starting to extend into analysis of anthropogenic impacts on non-climate (e.g. socio-economic) systems. However, care needs to be taken when making this extension, because methodological choices regarding extreme weather attribution can become crucial when considering the events’ impacts. The fraction of attributable risk (FAR) method, useful in extreme weather attribution research, has a very specific interpretation concerning a class of events, and there is potential to misinterpret results from weather event analyses as being applicable to specific events and their impact outcomes. Using two case studies of meteorological extremes and their impacts, we argue that FAR is not generally appropriate when estimating the magnitude of the anthropogenic signal behind a specific impact. Attribution assessments on impacts should always be carried out in addition to assessment of the associated meteorological event, since it cannot be assumed that the anthropogenic signal behind the weather is equivalent to the signal behind the impact because of lags and nonlinearities in the processes through which the impact system reacts to weather. Whilst there are situations where employing FAR to understand the climate change signal behind a class of impacts is useful (e.g. “system breaking” events), more useful results will generally be produced if attribution questions on specific impacts are reframed to focus on changes in the impact return value and magnitude across large samples of factual and counterfactual climate model and impact simulations. We advocate for constant interdisciplinary collaboration as essential for effective and robust impact attribution assessments.


2021 ◽  
Author(s):  
Roman Výleta ◽  
Milica Aleksić ◽  
Patrik Sleziak ◽  
Kamila Hlavcova

<p>The future development of the runoff conditions, as a consequence of climate change, is of great interest for water managers. Information about the potential impacts of climate change on the hydrological regime is needed for long-term planning of water resources and flood protection.</p><p>The aim of this study is to evaluate the possible impacts of climate change on the runoff regime in five selected catchments located in the territory of Slovakia. Changes in climatic characteristics (i.e., precipitation and air temperature) for future time horizons were prepared by a regional climate model KNMI using the A1B emission scenario. The selected climatic scenario predicts a general increase in air temperature and precipitation (higher in winter than in summer). For simulations of runoff under changed conditions, a lumped rainfall-runoff model (the TUW model) was used. This model belongs to a group of conceptual models and follows a structure of a widely used Swedish HBV model. The TUW model was calibrated for the period of 2011 – 2019. We assumed that this period would be similar (to recent/warmer climate) in terms of the average daily air temperatures and daily precipitation totals. The future changes in runoff due to climate change were evaluated by comparing the simulated long-term mean monthly runoff for the current state (1981-2010) and modelled scenarios in three time periods (2011-2040, 2041-2070, and 2071-2100). The results indicate that changes in the long-term runoff seasonality and extremality of hydrological cycle could be expected in the future. The runoff should increase in winter months compared to the reference period. This increase is probably related to a rise in temperature and anticipated snowmelt. Conversely, during the summer periods, a decrease in the long-term runoff could be assumed. According to modelling, these changes will be more pronounced in the later time horizons.</p><p>It should be noted that the results of the simulation are dependent on the availability of the inputs, the hydrological/climate model used, the schematization of the simulated processes, etc. Therefore, they need to be interpreted with a sufficient degree of caution</p>


2006 ◽  
Vol 19 (14) ◽  
pp. 3337-3353 ◽  
Author(s):  
P. Friedlingstein ◽  
P. Cox ◽  
R. Betts ◽  
L. Bopp ◽  
W. von Bloh ◽  
...  

Abstract Eleven coupled climate–carbon cycle models used a common protocol to study the coupling between climate change and the carbon cycle. The models were forced by historical emissions and the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 anthropogenic emissions of CO2 for the 1850–2100 time period. For each model, two simulations were performed in order to isolate the impact of climate change on the land and ocean carbon cycle, and therefore the climate feedback on the atmospheric CO2 concentration growth rate. There was unanimous agreement among the models that future climate change will reduce the efficiency of the earth system to absorb the anthropogenic carbon perturbation. A larger fraction of anthropogenic CO2 will stay airborne if climate change is accounted for. By the end of the twenty-first century, this additional CO2 varied between 20 and 200 ppm for the two extreme models, the majority of the models lying between 50 and 100 ppm. The higher CO2 levels led to an additional climate warming ranging between 0.1° and 1.5°C. All models simulated a negative sensitivity for both the land and the ocean carbon cycle to future climate. However, there was still a large uncertainty on the magnitude of these sensitivities. Eight models attributed most of the changes to the land, while three attributed it to the ocean. Also, a majority of the models located the reduction of land carbon uptake in the Tropics. However, the attribution of the land sensitivity to changes in net primary productivity versus changes in respiration is still subject to debate; no consensus emerged among the models.


2005 ◽  
Vol 42 ◽  
pp. 277-283 ◽  
Author(s):  
Andrew Wright ◽  
Jemma Wadham ◽  
Martin Siegert ◽  
Adrian Luckman ◽  
Jack Kohler

AbstractA surface-energy/mass-balance model with an explicit calculation of meltwater refreezing and superimposed ice formation is applied to midre Lovénbreen, Spitsbergen, Svalbard. The model is run with meteorological measurements to represent the present climate, and run with scenarios taken from global climate model predictions based on the IS92a emissions scenario to represent future climates. Model results indicate that superimposed ice accounts for on average 37% of the total net accumulation under present conditions. The model is found to be highly sensitive to changes in the mean annual air temperature and much less sensitive to changes in the total annual precipitation. A 0.5˚C decade–1 temperature increase is predicted to cause an average mass-balance change of –0.43 ma–1, while a 2% decade–1 increase in precipitation will result in only a +0.02 ma–1 change in mass balance. An increase in temperature results in a significant decrease in the size of the accumulation area at midre Lovénbreen and hence a similar decrease in the net volume of superimposed ice. The model predicts, however, that the relative importance of superimposed ice will increase to account for >50% of the total accumulation by 2050. The results show that the refreezing of meltwater and in particular the formation of superimposed ice make an important positive contribution to the mass balance of midre Lovénbreen under present conditions and will play a vital future role in slowing down the response of glacier mass balance to climate change.


2014 ◽  
Vol 6 (3) ◽  
pp. 371-379 ◽  
Author(s):  
Auwal F. Abdussalam ◽  
Andrew J. Monaghan ◽  
Daniel F. Steinhoff ◽  
Vanja M. Dukic ◽  
Mary H. Hayden ◽  
...  

Abstract Meningitis remains a major health burden throughout Sahelian Africa, especially in heavily populated northwest Nigeria with an annual incidence rate ranging from 18 to 200 per 100 000 people for 2000–11. Several studies have established that cases exhibit sensitivity to intra- and interannual climate variability, peaking during the hot and dry boreal spring months, raising concern that future climate change may increase the incidence of meningitis in the region. The impact of future climate change on meningitis risk in northwest Nigeria is assessed by forcing an empirical model of meningitis with monthly simulations of seven meteorological variables from an ensemble of 13 statistically downscaled global climate model projections from phase 5 of the Coupled Model Intercomparison Experiment (CMIP5) for representative concentration pathway (RCP) 2.6, 6.0, and 8.5 scenarios, with the numbers representing the globally averaged top-of-the-atmosphere radiative imbalance (in W m−2) in 2100. The results suggest future temperature increases due to climate change have the potential to significantly increase meningitis cases in both the early (2020–35) and late (2060–75) twenty-first century, and for the seasonal onset of meningitis to begin about a month earlier on average by late century, in October rather than November. Annual incidence may increase by 47% ± 8%, 64% ± 9%, and 99% ± 12% for the RCP 2.6, 6.0, and 8.5 scenarios, respectively, in 2060–75 with respect to 1990–2005. It is noteworthy that these results represent the climatological potential for increased cases due to climate change, as it is assumed that current prevention and treatment strategies will remain similar in the future.


2008 ◽  
Vol 5 (6) ◽  
pp. 4847-4866 ◽  
Author(s):  
P. Friedlingstein ◽  
P. Cadule ◽  
S. L. Piao ◽  
P. Ciais ◽  
S. Sitch

Abstract. Future climate change will have impact on global and regional terrestrial carbon balances. The fate of African tropical forests over the 21st century has been investigated through global coupled climate carbon cycle model simulations. Under the SRES-A2 socio-economic CO2 emission scenario of the IPCC, and using the Institut Pierre Simon Laplace coupled ocean-terrestrial carbon cycle and climate model, IPSL-CM4-LOOP, we found that the warming over African ecosystems induces a reduction of net ecosystem productivity, making a 20% contribution to the global climate-carbon cycle positive feedback. However, the African rainforest ecosystem alone makes only a negligible contribution to the overall feedback, much smaller than the one arising from the Amazon forest. This is first because of the two times smaller area of forest in Africa, but also because of the relatively lower local land carbon cycle sensitivity to climate change. This beneficial role of African forests in mitigating future climate change should be taken into account when designing forest conservation policy.


2021 ◽  
Author(s):  
Milica Aleksić ◽  
Patrik Sleziak ◽  
Kamila Hlavčová

AbstractA conceptual rainfall-runoff model was used for estimating the impact of climate change on the runoff regime in the Myjava River basin. Changes in climatic characteristics for future decades were expressed by a regional climate model using the A1B emission scenario. The model was calibrated for 1981–1990, 1991–2000, 2001–2010, 2011–2019. The best set of model parameters selected from the recent calibration period was used to simulate runoff for three periods, which should reflect the level of future climate change. The results show that the runoff should increase in the winter months (December and January) and decrease in the summer months (June to August). An evaluation of the long-term mean monthly runoff for the future climate scenario indicates that the highest runoff will occur in March.


2021 ◽  
pp. 1-57
Author(s):  
Emily Bercos-Hickey ◽  
Christina M. Patricola ◽  
William A. Gallus

AbstractThe impact of climate change on severe storms and tornadoes remains uncertain, largely owing to inconsistencies in observational data and limitations of climate models. We performed ensembles of convection-permitting climate model simulations to examine how three tornadic storms would change if similar events were to occur in pre-industrial and future climates. The choice of events includes winter, nocturnal, and spring tornadic storms to provide insight into how the timing and seasonality of storms may affect their response to climate change. Updraft helicity (UH), convective available potential energy (CAPE), storm relative helicity (SRH), and convective inhibition (CIN) were used to determine the favorability for the three tornadic storm events in the different climate states. We found that from the pre-industrial to present, the potential for tornadic storms decreased in the winter event and increased in the nocturnal and spring events. With future climate change, the potential for tornadic storms increased in the winter and nocturnal events in association with increased CAPE, and decreased in the spring event despite greater CAPE.


Sign in / Sign up

Export Citation Format

Share Document