scholarly journals Modelling an alkenone-like proxy record in the NW African upwelling

2006 ◽  
Vol 3 (3) ◽  
pp. 251-269 ◽  
Author(s):  
X. Giraud

Abstract. A regional biogeochemical model is applied to the NW African coastal upwelling between 19° N and 27° N to investigate how a water temperature proxy, alkenones, are produced at the sea surface and recorded in the slope sediments. The biogeochemical model has two phytoplankton groups: an alkenone producer group, considered to be coccolithophores, and a group comprising other phytoplankton. The Regional Ocean Modelling System (ROMS) is used to simulate the ocean circulation and takes advantage of the Adaptive Grid Refinement in Fortran (AGRIF) package to set up an embedded griding system. In the simulations the alkenone temperature records in the sediments are between 1.1 and 2.3°C colder than the annual mean SSTs. Despite the seasonality of the coccolithophore production, this temperature difference is not mainly due to a seasonal bias, nor to the lateral advection of phytoplankton and phytodetritus seaward from the cold near-shore waters, but to the production depth of the coccolithophores. If coretop alkenone temperatures are effectively recording the annual mean SSTs, the amount of alkenone produced must vary among the coccolithophores in the water column and depend on physiological factors (e.g. growth rate, nutrient stress).

2006 ◽  
Vol 3 (1) ◽  
pp. 71-121 ◽  
Author(s):  
X. Giraud

Abstract. A regional biogeochemical model is applied to the NW African coastal upwelling between 19° N and 27° N to investigate how a water temperature proxy is produced at the sea surface and recorded in the slope sediments. The biological model has two phytoplankton groups, to distinguish an alkenone producer group (considered as coccolithophores) from other phytoplankton. The Regional Ocean Modelling System (ROMS) is used to simulate the ocean circulation, and takes advantage of the Adaptive Grid Refinement in Fortran (AGRIF) package to set up an embedded griding system. The results show that the alkenone-like temperature records in the sediments are between 1.1 and 2.1°C colder compared to the annual mean SSTs. Despite the seasonality of the coccolithophorid production, this temperature difference is not mainly due to a seasonal bias, nor to the lateral advection of phytoplankton and phytodetritus from the cold water domain to most offshore locations, but to the production depth of the coccolithophores. If core-top sediment alkenone-derived temperatures are effectively recording the annual mean SSTs, the quantitative alkenone production in the water column must be inhomogeneous among the coccolithophore population and depend on physiological factors (growth rate, nutrient stress).


2019 ◽  
Vol 69 (1) ◽  
pp. 93-103
Author(s):  
Anoopa Prasad C ◽  
P.V. Hareesh Kumar

The Bay of Bengal (BoB) is a low saline basin owing to large influx of freshwater from precipitation and river runoff. To maintain the salt balance of the BoB, the incessant lowering of salinity is to be balanced by the inflow of saltier water into the basin. In the present work, various processes that contribute to the saltening of the BoB, viz. coastal upwelling, eddies and their interaction, lateral advection from Arabian Sea and tropical cyclones are discussed. In the near-shore regions, the coastal upwelling due to wind induced Ekman transport plays a dominant role in increasing the surface salinity. On the other hand, in the open ocean, the divergence induced by eddies and their mutual interaction contributes significantly to the salt water pumping. In the southern BoB, the advection from the Arabian Sea increases the salinity. The formation of cyclones in the BoB also leads to an increase in the surface salinity. However, the magnitude of saltening of the Bay due to these processes varies from north to south. The uplift of saltier water from subsurface levels increases the salinity in the surface layers thereby creating a salinity gradient and a salinity front.


2009 ◽  
Vol 6 (1) ◽  
pp. 85-102 ◽  
Author(s):  
G. Fischer ◽  
G. Karakaş

Abstract. The flux of materials to the deep sea is dominated by larger, organic-rich particles with sinking rates varying between a few meters and several hundred meters per day. Mineral ballast may regulate the transfer of organic matter and other components by determining the sinking rates, e.g. via particle density. We calculated particle sinking rates from mass flux patterns and alkenone measurements applying the results of sediment trap experiments from the Atlantic Ocean. We have indication for higher particle sinking rates in carbonate-dominated production systems when considering both regional and seasonal data. During a summer coccolithophorid bloom in the Cape Blanc coastal upwelling off Mauritania, particle sinking rates reached almost 570 m per day, most probably due the fast sedimentation of densely packed zooplankton fecal pellets, which transport high amounts of organic carbon associated with coccoliths to the deep ocean despite rather low production. During the recurring winter-spring blooms off NW Africa and in opal-rich production systems of the Southern Ocean, sinking rates of larger particles, most probably diatom aggregates, showed a tendency to lower values. However, there is no straightforward relationship between carbonate content and particle sinking rates. This could be due to the unknown composition of carbonate and/or the influence of particle size and shape on sinking rates. It also remains noticeable that the highest sinking rates occurred in dust-rich ocean regions off NW Africa, but this issue deserves further detailed field and laboratory investigations. We obtained increasing sinking rates with depth. By using a seven-compartment biogeochemical model, it was shown that the deep ocean organic carbon flux at a mesotrophic sediment trap site off Cape Blanc can be captured fairly well using seasonal variable particle sinking rates. Our model provides a total organic carbon flux of 0.29 Tg per year down to 3000 m off the NW African upwelling region between 5 and 35° N. Simple parameterisations of remineralisation and sinking rates in such models, however, limit their capability in reproducing the flux variation in the water column.


Ocean Science ◽  
2013 ◽  
Vol 9 (5) ◽  
pp. 885-899 ◽  
Author(s):  
F. Wobus ◽  
G. I. Shapiro ◽  
J. M. Huthnance ◽  
M. A. M. Maqueda ◽  
Y. Aksenov

Abstract. We investigate the flow of brine-enriched shelf water from Storfjorden (Svalbard) into Fram Strait and onto the western Svalbard Shelf using a regional set-up of NEMO-SHELF, a 3-D numerical ocean circulation model. The model is set up with realistic bathymetry, atmospheric forcing, open boundary conditions and tides. The model has 3 km horizontal resolution and 50 vertical levels in the sh-coordinate system which is specially designed to resolve bottom boundary layer processes. In a series of modelling experiments we focus on the influence of tides on the propagation of the dense water plume by comparing results from tidal and non-tidal model runs. Comparisons of non-tidal to tidal simulations reveal a hotspot of tidally induced horizontal diffusion leading to the lateral dispersion of the plume at the southernmost headland of Spitsbergen which is in close proximity to the plume path. As a result the lighter fractions in the diluted upper layer of the plume are drawn into the shallow coastal current that carries Storfjorden water onto the western Svalbard Shelf, while the dense bottom layer continues to sink down the slope. This bifurcation of the plume into a diluted shelf branch and a dense downslope branch is enhanced by tidally induced shear dispersion at the headland. Tidal effects at the headland are shown to cause a net reduction in the downslope flux of Storfjorden water into the deep Fram Strait. This finding contrasts previous results from observations of a dense plume on a different shelf without abrupt topography.


2009 ◽  
Vol 39 (2) ◽  
pp. 387-403 ◽  
Author(s):  
Shinichiro Kida ◽  
Jiayan Yang ◽  
James F. Price

Abstract Marginal sea overflows and the overlying upper ocean are coupled in the vertical by two distinct mechanisms—by an interfacial mass flux from the upper ocean to the overflow layer that accompanies entrainment and by a divergent eddy flux associated with baroclinic instability. Because both mechanisms tend to be localized in space, the resulting upper ocean circulation can be characterized as a β plume for which the relevant background potential vorticity is set by the slope of the topography, that is, a topographic β plume. The entrainment-driven topographic β plume consists of a single gyre that is aligned along isobaths. The circulation is cyclonic within the upper ocean (water columns are stretched). The transport within one branch of the topographic β plume may exceed the entrainment flux by a factor of 2 or more. Overflows are likely to be baroclinically unstable, especially near the strait. This creates eddy variability in both the upper ocean and overflow layers and a flux of momentum and energy in the vertical. In the time mean, the eddies accompanying baroclinic instability set up a double-gyre circulation in the upper ocean, an eddy-driven topographic β plume. In regions where baroclinic instability is growing, the momentum flux from the overflow into the upper ocean acts as a drag on the overflow and causes the overflow to descend the slope at a steeper angle than what would arise from bottom friction alone. Numerical model experiments suggest that the Faroe Bank Channel overflow should be the most prominent example of an eddy-driven topographic β plume and that the resulting upper-layer transport should be comparable to that of the overflow. The overflow-layer eddies that accompany baroclinic instability are analogous to those observed in moored array data. In contrast, the upper layer of the Mediterranean overflow is likely to be dominated more by an entrainment-driven topographic β plume. The difference arises because entrainment occurs at a much shallower location for the Mediterranean case and the background potential vorticity gradient of the upper ocean is much larger.


2018 ◽  
Vol 15 (13) ◽  
pp. 4163-4180 ◽  
Author(s):  
Akitomo Yamamoto ◽  
Ayako Abe-Ouchi ◽  
Yasuhiro Yamanaka

Abstract. Global warming is expected to significantly decrease oceanic carbon uptake and therefore increase atmospheric CO2 and global warming. The primary reasons given in previous studies for such changes in the oceanic carbon uptake are the solubility reduction due to seawater warming and changes in the ocean circulation and biological pump. However, the quantitative contributions of different processes to the overall reduction in ocean uptake are still unclear. In this study, we investigated multi-millennium responses of oceanic carbon uptake to global warming and quantified the contributions of the physical and biological pumps to these responses using an atmosphere–ocean general circulation model and a biogeochemical model. We found that global warming reduced oceanic CO2 uptake by 13 % (30 %) in the first 140 years (after 2000 model years), consistent with previous studies. Our sensitivity experiments showed that this reduction is primarily driven by changes in the organic matter cycle via ocean circulation change and solubility change due to seawater warming. These results differ from most previous studies, in which circulation changes and solubility change from seawater warming are the dominant processes. The weakening of biological production and carbon export induced by circulation change and lower nutrient supply, diminishes the vertical DIC gradient and substantially reduces the CO2 uptake. The weaker deep-ocean circulation decreases the downward transport of CO2 from the surface to the deep ocean, leading to a drop in CO2 uptake in high-latitude regions. Conversely, weaker equatorial upwelling reduces the upward transport of natural CO2 and therefore enhances the CO2 uptake in low-latitude regions. Because these effects cancel each other out, circulation change plays only a small direct role in the reduction of CO2 uptake due to global warming but a large indirect role through nutrient transport and biological processes.


2020 ◽  
Author(s):  
Arthur Capet ◽  
vandenbulcke Luc ◽  
Grégoire Marilaure

<p>An important deoxygenation trend has been described in the Black Sea over the five past decades from in-situ observations [1]. While the implications for basin-scale biogeochemistry and possible future trends of this dynamics are unclear, it is important to consolidate our means to resolve the dynamics of the Black Sea oxygen content in order to assess the likelihood of future evolution scenario, and the possible morphology of low-oxygen events. </p><p>Also, it is known that current global models simulate only about half the observed oceanic O2 loss and fail in reproducing its vertical distribution[2]. In parts, unexplained O2 losses could be attributed to illy parameterized biogeochemical processes within 3D models used to integrate those multi-elemental dynamics.</p><p>Biogeochemical processes involved in O2 dynamics are structured vertically and well separated in the stratified Black Sea. O2 sources proceed from air-sea fluxes and photosynthesis in the<br>photic zone. Organic matter (OM) is respired over a depth determined by its composition and<br>sinking, via succeeding redox reactions. Those intricate dynamics leave unknowns as regards the biogeochemical impacts of future deoxygenation on associated cycles, for instance on the oceanic carbon pump. Here we use the Black Sea scene to derive model-observation strategies to best address the global deoxygenation concern.</p><p>First, we decipher components of the O2 dynamics in the open basin, and discuss the way in which O2-based indicators informs on the relative importance of processes involved. Using 1D biogeochemical model set-up, we then conduct a sensitivity analysis to pin-point model parameters, ie. biogeochemical processes, that bears the largest part in the uncertainty of simulated results for those diagnostics. Finally, we identify among the most impacting parameters the ones that can most efficiently be constrained on the basis of modern observational infrastructure, and Bio-Argo in particular. </p><p>The whole procedure aims at orienting the development of observations networks and data assimilation approaches in order to consolidate our means to anticipate the marine deoxygenation challenge. </p><p>[1] Capet A et al., 2016, Biogeoscience, 13:1287-1297<br>[2] Oschlies A et al., 2018, Nature Geosci, 11(7):467–473</p>


Author(s):  
Shiliang Shan ◽  
Jinyu Sheng ◽  
Kyoko Ohashi ◽  
Mathieu Dever

This study presents a multi-nested ocean circulation model developed recently for the central Scotian Shelf. The model consists of four submodels downscaling from the eastern Canadian Shelf to the central Scotian Shelf. The model is driven by tides, river discharges, and atmospheric forcing. The model results are validated against observations, including satellite remote sensing data from GHRSST and Aquarius and in situ measurements taken by tide gauges, a marine buoy, ADCPs and CTDs. The ocean circulation model is able to capture variations of sea level, hydrography and the Nova Scotia Current on timescales of days to seasons over the central Scotian Shelf. Model results are used in a process study to examine the effect of tidal mixing and wind-driven coastal upwelling in the formation of cold surface waters along the coast of Nova Scotia.


2011 ◽  
Vol 41 (6) ◽  
pp. 1271-1276 ◽  
Author(s):  
Mirko Orlić ◽  
Zoran Pasarić

Abstract An existing reduced-gravity model that reproduces the response of the coastal sea to alongshore wind forcing at subinertial frequencies is extended by allowing for cross-shore wind forcing and by considering superinertial frequencies. The obtained explicit solution shows that the wind-driven currents are predominantly controlled by friction and the Coriolis force at subinertial frequencies and by friction and local acceleration at superinertial frequencies. The effect of the coast is manifested by coastal-trapped variability at subinertial frequencies and baroclinic inertia–gravity waves propagating away from the coast at superinertial frequencies. The pycnocline oscillates at the coast not only at subinertial but also at superinertial frequencies, with the alongshore wind contributing more to the former and the cross-shore wind influencing more the latter. The oscillations are most pronounced when the periodic wind forcing is resonantly coupled to the local inertial oscillations (but only if the wind is not rotating counter to the inertial currents) and at near-zero frequencies (but not when the wind is purely cross-shore). These theoretical findings are related to recent observations of diurnal temperature oscillations in the near-shore water column.


Sign in / Sign up

Export Citation Format

Share Document