scholarly journals Sensitivity simulations with direct shortwave radiative forcing by aeolian dust during glacial cycles

2014 ◽  
Vol 10 (4) ◽  
pp. 1333-1348 ◽  
Author(s):  
E. Bauer ◽  
A. Ganopolski

Abstract. Possible feedback effects between aeolian dust, climate and ice sheets are studied for the first time with an Earth system model of intermediate complexity over the late Pleistocene period. Correlations between climate and dust deposition records suggest that aeolian dust potentially plays an important role for the evolution of glacial cycles. Here climatic effects from the dust direct radiative forcing (DRF) caused by absorption and scattering of solar radiation are investigated. Key elements controlling the dust DRF are the atmospheric dust distribution and the absorption-scattering efficiency of dust aerosols. Effective physical parameters in the description of these elements are varied within uncertainty ranges known from available data and detailed model studies. Although the parameters can be reasonably constrained, the simulated dust DRF spans a~wide uncertainty range related to the strong nonlinearity of the Earth system. In our simulations, the dust DRF is highly localized. Medium-range parameters result in negative DRF of several watts per square metre in regions close to major dust sources and negligible values elsewhere. In the case of high absorption efficiency, the local dust DRF can reach positive values and the global mean DRF can be insignificantly small. In the case of low absorption efficiency, the dust DRF can produce a significant global cooling in glacial periods, which leads to a doubling of the maximum glacial ice volume relative to the case with small dust DRF. DRF-induced temperature and precipitation changes can either be attenuated or amplified through a feedback loop involving the dust cycle. The sensitivity experiments suggest that depending on dust optical parameters, dust DRF has the potential to either damp or reinforce glacial–interglacial climate changes.

2014 ◽  
Vol 10 (1) ◽  
pp. 149-193
Author(s):  
E. Bauer ◽  
A. Ganopolski

Abstract. Possible feedback effects between aeolian dust, climate and ice sheets are studied for the first time with an Earth system model of intermediate complexity over the late Pleistocene period. Correlations between climate variables and dust deposits suggest that aeolian dust potentially plays an important role for the evolution of glacial cycles. Here climatic effects from the dust direct radiative forcing (DRF) caused by absorption and scattering of solar radiation are investigated. Key factors controlling the dust DRF are the atmospheric dust distribution and the absorption-scattering efficiency of dust aerosols. Effective physical parameters in the description of these factors are varied within uncertainty ranges known from available data and detailed model studies. Although the parameters are reasonably constrained by use of these studies, the simulated dust DRF spans a wide uncertainty range related to nonlinear dependencies. In our simulations, the dust DRF is highly localized. Medium-range parameters result in negative DRF of several W m−2 in regions close to major dust sources and negligible values elsewhere. In case of high absorption efficiency, the local dust DRF can reach positive values and the global mean DRF can be insignificantly small. In case of low absorption efficiency, the dust DRF can produce a significant global cooling in glacial periods which leads to a doubling of the maximum glacial ice volume relative to the case with small dust DRF. DRF-induced temperature and precipitation changes can either be attenuated or amplified through a feedback loop involving the dust cycle. The sensitivity experiments suggest that depending on dust optical parameters the DRF has the potential to either damp or reinforce glacial–interglacial climate changes.


2020 ◽  
Author(s):  
Matteo Willeit ◽  
Andrey Ganopolski

<p>The processes leading to the observed atmospheric CO2 variations of ~80 ppm between glacial and interglacial times associated with the glacial cycles of the past million years are still not fully understood. Computationally efficient Earth system models are a unique tool to help elucidate the mechanisms behind the CO2 variations. Here we use the newly developed Earth system model of intermediate complexity CLIMBER-X to explore the effect of different processes on the atmospheric CO2 evolution since the last glacial maximum using transient simulations.</p><p>CLIMBER-X includes the frictional-geostrophic 3D ocean model GOLDSTEIN coupled to the HAMOCC ocean and sediment carbon cycle model, the semi-empirical statistical-dynamical atmosphere model SESAM and the land model PALADYN. The model also includes the ice sheet model SICOPOLIS, but for in presented experiments the ice sheets are prescribed from reconstructions. CLIMBER-X can simulate ~10,000 model years per day.</p><p>In transient experiments of the last 20,000 years we test the sensitivity of simulated atmospheric CO2 to changes in ocean circulation, ocean temperature, sea level, atmospheric dust deposition and the model representation of crucial ocean biogeochemistry and land carbon cycle processes.</p>


2012 ◽  
Vol 5 (5) ◽  
pp. 1137-1160 ◽  
Author(s):  
R. Wania ◽  
K. J. Meissner ◽  
M. Eby ◽  
V. K. Arora ◽  
I. Ross ◽  
...  

Abstract. A representation of the terrestrial nitrogen cycle is introduced into the UVic Earth System Climate Model (UVic ESCM). The UVic ESCM now contains five terrestrial carbon pools and seven terrestrial nitrogen pools: soil, litter, leaves, stem and roots for both elements and ammonium and nitrate in the soil for nitrogen. Nitrogen cycles through plant tissue, litter, soil and the mineral pools before being taken up again by the plant. Biological N2 fixation and nitrogen deposition represent external inputs to the plant-soil system while losses occur via leaching. Simulated carbon and nitrogen pools and fluxes are in the range of other models and observations. Gross primary production (GPP) for the 1990s in the CN-coupled version is 129.6 Pg C a−1 and net C uptake is 0.83 Pg C a−1, whereas the C-only version results in a GPP of 133.1 Pg C a−1 and a net C uptake of 1.57 Pg C a−1. At the end of a transient experiment for the years 1800–1999, where radiative forcing is held constant but CO2 fertilisation for vegetation is permitted to occur, the CN-coupled version shows an enhanced net C uptake of 1.05 Pg C a−1, whereas in the experiment where CO2 is held constant and temperature is transient the land turns into a C source of 0.60 Pg C a−1 by the 1990s. The arithmetic sum of the temperature and CO2 effects is 0.45 Pg C a−1, 0.38 Pg C a−1 lower than seen in the fully forced model, suggesting a strong nonlinearity in the CN-coupled version. Anthropogenic N deposition has a positive effect on Net Ecosystem Production of 0.35 Pg C a−1. Overall, the UVic CN-coupled version shows similar characteristics to other CN-coupled Earth System Models, as measured by net C balance and sensitivity to changes in climate, CO2 and temperature.


2013 ◽  
Vol 17 (11) ◽  
pp. 4401-4413 ◽  
Author(s):  
J. S. Deems ◽  
T. H. Painter ◽  
J. J. Barsugli ◽  
J. Belnap ◽  
B. Udall

Abstract. The Colorado River provides water to 40 million people in seven western states and two countries and to 5.5 million irrigated acres. The river has long been overallocated. Climate models project runoff losses of 5–20% from the basin by mid-21st century due to human-induced climate change. Recent work has shown that decreased snow albedo from anthropogenic dust loading to the CO mountains shortens the duration of snow cover by several weeks relative to conditions prior to western expansion of the US in the mid-1800s, and advances peak runoff at Lees Ferry, Arizona, by an average of 3 weeks. Increases in evapotranspiration from earlier exposure of soils and germination of plants have been estimated to decrease annual runoff by more than 1.0 billion cubic meters, or ~5% of the annual average. This prior work was based on observed dust loadings during 2005–2008; however, 2009 and 2010 saw unprecedented levels of dust loading on snowpacks in the Upper Colorado River Basin (UCRB), being on the order of 5 times the 2005–2008 loading. Building on our prior work, we developed a new snow albedo decay parameterization based on observations in 2009/10 to mimic the radiative forcing of extreme dust deposition. We convolve low, moderate, and extreme dust/snow albedos with both historic climate forcing and two future climate scenarios via a delta method perturbation of historic records. Compared to moderate dust, extreme dust absorbs 2× to 4× the solar radiation, and shifts peak snowmelt an additional 3 weeks earlier to a total of 6 weeks earlier than pre-disturbance. The extreme dust scenario reduces annual flow volume an additional 1% (6% compared to pre-disturbance), a smaller difference than from low to moderate dust scenarios due to melt season shifting into a season of lower evaporative demand. The sensitivity of flow timing to dust radiative forcing of snow albedo is maintained under future climate scenarios, but the sensitivity of flow volume reductions decreases with increased climate forcing. These results have implications for water management and suggest that dust abatement efforts could be an important component of any climate adaptation strategies in the UCRB.


2018 ◽  
Vol 37 ◽  
pp. 03004
Author(s):  
Abdelouahid Tahiri ◽  
Mohamed Diouri

The atmospheric aerosol contributes to the definition of the climate with direct effect, the diffusion and absorption of solar and terrestrial radiations, and indirect, the cloud formation process where aerosols behave as condensation nuclei and alter the optical properties. Satellites and ground-based networks (solar photometers) allow the terrestrial aerosol observation and the determination of impact. Desert aerosol considered among the main types of tropospheric aerosols whose optical property uncertainties are still quite important. The analysis concerns the optical parameters recorded in 2015 at Ouarzazate solar photometric station (AERONET/PHOTONS network, http://aeronet.gsfc.nasa.gov/) close to Saharan zone. The daily average aerosol optical depthτaer at 0.5μm, are relatively high in summer and less degree in spring (from 0.01 to 1.82). Daily average of the Angstrom coefficients α vary between 0.01 and 1.55. The daily average of aerosol radiative forcing at the surface range between -150W/m2 and -10 W/m2 with peaks recorded in summer, characterized locally by large loads of desert aerosol in agreement with the advections of the Southeast of Morocco. Those recorded at the Top of the atmosphere show a variation from -74 W/m2 to +24 W/m2


2017 ◽  
Vol 11 (2) ◽  
pp. 741-754 ◽  
Author(s):  
Monika Wittmann ◽  
Christine Dorothea Groot Zwaaftink ◽  
Louise Steffensen Schmidt ◽  
Sverrir Guðmundsson ◽  
Finnur Pálsson ◽  
...  

Abstract. Deposition of small amounts of airborne dust on glaciers causes positive radiative forcing and enhanced melting due to the reduction of surface albedo. To study the effects of dust deposition on the mass balance of Brúarjökull, an outlet glacier of the largest ice cap in Iceland, Vatnajökull, a study of dust deposition events in the year 2012 was carried out. The dust-mobilisation module FLEXDUST was used to calculate spatio-temporally resolved dust emissions from Iceland and the dispersion model FLEXPART was used to simulate atmospheric dust dispersion and deposition. We used albedo measurements at two automatic weather stations on Brúarjökull to evaluate the dust impacts. Both stations are situated in the accumulation area of the glacier, but the lower station is close to the equilibrium line. For this site ( ∼  1210 m a.s.l.), the dispersion model produced 10 major dust deposition events and a total annual deposition of 20.5 g m−2. At the station located higher on the glacier ( ∼  1525 m a.s.l.), the model produced nine dust events, with one single event causing  ∼  5 g m−2 of dust deposition and a total deposition of  ∼  10 g m−2 yr−1. The main dust source was found to be the Dyngjusandur floodplain north of Vatnajökull; northerly winds prevailed 80 % of the time at the lower station when dust events occurred. In all of the simulated dust events, a corresponding albedo drop was observed at the weather stations. The influence of the dust on the albedo was estimated using the regional climate model HIRHAM5 to simulate the albedo of a clean glacier surface without dust. By comparing the measured albedo to the modelled albedo, we determine the influence of dust events on the snow albedo and the surface energy balance. We estimate that the dust deposition caused an additional 1.1 m w.e. (water equivalent) of snowmelt (or 42 % of the 2.8 m w.e. total melt) compared to a hypothetical clean glacier surface at the lower station, and 0.6 m w.e. more melt (or 38 % of the 1.6 m w.e. melt in total) at the station located further upglacier. Our findings show that dust has a strong influence on the mass balance of glaciers in Iceland.


2012 ◽  
Vol 39 (10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Timothy Andrews ◽  
Mark A. Ringer ◽  
Marie Doutriaux-Boucher ◽  
Mark J. Webb ◽  
William J. Collins

2017 ◽  
Vol 30 (23) ◽  
pp. 9343-9363 ◽  
Author(s):  
Richard G. Williams ◽  
Vassil Roussenov ◽  
Philip Goodwin ◽  
Laure Resplandy ◽  
Laurent Bopp

Climate projections reveal global-mean surface warming increasing nearly linearly with cumulative carbon emissions. The sensitivity of surface warming to carbon emissions is interpreted in terms of a product of three terms: the dependence of surface warming on radiative forcing, the fractional radiative forcing from CO2, and the dependence of radiative forcing from CO2 on carbon emissions. Mechanistically each term varies, respectively, with climate sensitivity and ocean heat uptake, radiative forcing contributions, and ocean and terrestrial carbon uptake. The sensitivity of surface warming to fossil-fuel carbon emissions is examined using an ensemble of Earth system models, forced either by an annual increase in atmospheric CO2 or by RCPs until year 2100. The sensitivity of surface warming to carbon emissions is controlled by a temporal decrease in the dependence of radiative forcing from CO2 on carbon emissions, which is partly offset by a temporal increase in the dependence of surface warming on radiative forcing. The decrease in the dependence of radiative forcing from CO2 is due to a decline in the ratio of the global ocean carbon undersaturation to carbon emissions, while the increase in the dependence of surface warming is due to a decline in the ratio of ocean heat uptake to radiative forcing. At the present time, there are large intermodel differences in the sensitivity in surface warming to carbon emissions, which are mainly due to uncertainties in the climate sensitivity and ocean heat uptake. These uncertainties undermine the ability to predict how much carbon may be emitted before reaching a warming target.


2017 ◽  
Author(s):  
Duseong S. Jo ◽  
Rokjin J. Park ◽  
Jaein I. Jeong ◽  
Gabriele Curci ◽  
Hyung-Min Lee ◽  
...  

Abstract. Single Scattering Albedo (SSA), the ratio of scattering efficiency to total extinction efficiency, is an essential parameter used to estimate the Direct Radiative Forcing (DRF) of aerosols. However, SSA is one of the large contributors to the uncertainty of DRF estimations. In this study, we examined the sensitivity of SSA calculations to the physical properties of absorbing aerosols, in particular, Black Carbon (BC), Brown Carbon (BrC), and dust. We used GEOS-Chem 3-D global chemical transport model (CTM) simulations and a post-processing tool for the aerosol optical properties (FlexAOD). The model and input parameters were evaluated by comparison against the observed aerosol mass concentrations and the Aerosol Optical Depth (AOD) values obtained from global surface observation networks such as the global Aerosol Mass Spectrometer (AMS) dataset, the Surface Particulate Matter Network (SPARTAN), and the Aerosol Robotic Network (AERONET). The model was generally successful in reproducing the observed variability of both the Particulate Matter 2.5 μm (PM2.5) and AOD (R ~ 0.76) values, although it underestimated the magnitudes by approximately 20 %. Our sensitivity tests of the SSA calculation revealed that the aerosol physical parameters, which have generally received less attention than the aerosol mass loadings, can cause large uncertainties in the resulting DRF estimation. For example, large variations in the calculated BC absorption may result from slight changes of the geometric mean radius, geometric standard deviation, real and imaginary refractive indices, and density. The inclusion of BrC and observationally-constrained dust size distributions also significantly affected the SSA, and resulted in a remarkable improvement for the simulated SSA at 440 nm (bias was reduced by 44–49 %) compared with the AERONET observations. Based on the simulations performed during this study, we found that the global aerosol direct radiative effect was increased by 10 % after the SSA bias was reduced.


Sign in / Sign up

Export Citation Format

Share Document