scholarly journals Reconstructing past climate by using proxy data and a linear climate model

2016 ◽  
Author(s):  
Walter A. Perkins ◽  
Gregory J. Hakim

Abstract. We examine the skill of a new approach to climate field reconstructions (CFRs) using an online paleoclimate data assimilation (PDA) method. Several recent studies have foregone climate model forecasts during assimilation due to the computational expense of running coupled global climate models (CGCMs), and the relatively low skill of these forecasts on longer timescales. Here we greatly diminish the computational cost by employing an empirical forecast model (linear inverse model; LIM), which has been shown to have comparable skill to CGCMs. We reconstruct annual-average 2 m air temperature over the instrumental period (1850–2000) using proxy records from the Pages 2k Consortium phase 1 database; proxy system models for estimating proxy observations are calibrated on GISTEMP surface temperature analyses. We compare results for LIMs calibrated on observational (Berkeley Earth), reanalysis (20th Century Reanalysis), and CMIP5 climate model (CCSM4 and MPI) data relative to a control offline reconstruction method. Generally, we find that the usage of LIM forecasts for online PDA increases reconstruction agreement with the instrumental record for both spatial fields and global mean temperature (GMT). Specifically, the coefficient of efficiency (CE) skill metric for detrended GMT increases by an average of 57 % over the offline benchmark. LIM experiments display a common pattern of skill improvement in the spatial fields over northern hemisphere land areas and in the high-latitude North Atlantic – Barents Sea corridor. Experiments for non-CGCM-calibrated LIMs reveal region-specific reductions in spatial skill compared to the offline control, likely due to aspects of the LIM calibration process. Overall, the CGCM-calibrated LIMs have the best performance when considering both spatial fields and GMT. A comparison with the persistence forecast experiment suggests that improvements are associated with the dynamical evolution, and not simply persistence of temperature anomalies.

2017 ◽  
Vol 50 (1) ◽  
pp. 117-137 ◽  
Author(s):  
Vishal Singh ◽  
Ashutosh Sharma ◽  
Manish Kumar Goyal

Abstract Here, a regional climate model (RCM) RegCM4 and Coupled Model Intercomparison Project phase 5 (CMIP5) global climate models (GCMs) such as Coupled Physical Model (CM3), Coupled Climate Model phase 1 (CM2P1) and Earth System Model (ESM-2M) with their representative concentration pathway (RCP) datasets were utilized in projecting hydro-climatological variables such as precipitation, temperature, and streamflow in Teesta River basin in north Sikkim, eastern Himalaya, India. For downscaling, a ‘predictor selection analysis’ was performed utilizing a statistical downscaling model. The precision and applicability of RCM and GCM datasets were assessed using several statistical evaluation functions. The downscaled temperature and precipitation datasets were used in the Soil and Water Assessment Tool (SWAT) model for projecting the water yield and streamflow. A Sequential Uncertainty Parameter Fitting 2 optimization algorithm was used for optimizing the coefficient parameter values. The Mann–Kendall test results showed increasing trend in projected temperature and precipitation for future time. A significant increase in minimum temperature was found for the projected scenarios. The SWAT model-based projected outcomes showed a substantial increase in the streamflow and water yield. The results provide an understanding about the hydro-climatological data uncertainties and future changes associated with hydrological components that could be expected because of climate change.


2017 ◽  
Vol 13 (5) ◽  
pp. 421-436 ◽  
Author(s):  
Walter A. Perkins ◽  
Gregory J. Hakim

Abstract. We examine the skill of a new approach to climate field reconstructions (CFRs) using an online paleoclimate data assimilation (PDA) method. Several recent studies have foregone climate model forecasts during assimilation due to the computational expense of running coupled global climate models (CGCMs) and the relatively low skill of these forecasts on longer timescales. Here we greatly diminish the computational cost by employing an empirical forecast model (linear inverse model, LIM), which has been shown to have skill comparable to CGCMs for forecasting annual-to-decadal surface temperature anomalies. We reconstruct annual-average 2 m air temperature over the instrumental period (1850–2000) using proxy records from the PAGES 2k Consortium Phase 1 database; proxy models for estimating proxy observations are calibrated on GISTEMP surface temperature analyses. We compare results for LIMs calibrated using observational (Berkeley Earth), reanalysis (20th Century Reanalysis), and CMIP5 climate model (CCSM4 and MPI) data relative to a control offline reconstruction method. Generally, we find that the usage of LIM forecasts for online PDA increases reconstruction agreement with the instrumental record for both spatial fields and global mean temperature (GMT). Specifically, the coefficient of efficiency (CE) skill metric for detrended GMT increases by an average of 57 % over the offline benchmark. LIM experiments display a common pattern of skill improvement in the spatial fields over Northern Hemisphere land areas and in the high-latitude North Atlantic–Barents Sea corridor. Experiments for non-CGCM-calibrated LIMs reveal region-specific reductions in spatial skill compared to the offline control, likely due to aspects of the LIM calibration process. Overall, the CGCM-calibrated LIMs have the best performance when considering both spatial fields and GMT. A comparison with the persistence forecast experiment suggests that improvements are associated with the linear dynamical constraints of the forecast and not simply persistence of temperature anomalies.


2021 ◽  
pp. 1-69
Author(s):  
Zane Martin ◽  
Clara Orbe ◽  
Shuguang Wang ◽  
Adam Sobel

AbstractObservational studies show a strong connection between the intraseasonal Madden-Julian oscillation (MJO) and the stratospheric quasi-biennial oscillation (QBO): the boreal winter MJO is stronger, more predictable, and has different teleconnections when the QBO in the lower stratosphere is easterly versus westerly. Despite the strength of the observed connection, global climate models do not produce an MJO-QBO link. Here the authors use a current-generation ocean-atmosphere coupled NASA Goddard Institute for Space Studies global climate model (Model E2.1) to examine the MJO-QBO link. To represent the QBO with minimal bias, the model zonal mean stratospheric zonal and meridional winds are relaxed to reanalysis fields from 1980-2017. The model troposphere, including the MJO, is allowed to freely evolve. The model with stratospheric nudging captures QBO signals well, including QBO temperature anomalies. However, an ensemble of nudged simulations still lacks an MJO-QBO connection.


2017 ◽  
Author(s):  
Matthew C. Wozniak ◽  
Allison Steiner

Abstract. We develop a prognostic model of Pollen Emissions for Climate Models (PECM) for use within regional and global climate models to simulate pollen counts over the seasonal cycle based on geography, vegetation type and meteorological parameters. Using modern surface pollen count data, empirical relationships between prior-year annual average temperature and pollen season start dates and end dates are developed for deciduous broadleaf trees (Acer, Alnus, Betula, Fraxinus, Morus, Platanus, Populus, Quercus, Ulmus), evergreen needleleaf trees (Cupressaceae, Pinaceae), grasses (Poaceae; C3, C4), and ragweed (Ambrosia). This regression model explains as much as 57 % of the variance in pollen phenological dates, and it is used to create a climate-flexible phenology that can be used to study the response of wind-driven pollen emissions to climate change. The emissions model is evaluated in a regional climate model (RegCM4) over the continental United States by prescribing an emission potential from PECM and transporting pollen as aerosol tracers. We evaluate two different pollen emissions scenarios in the model: (1) using a taxa-specific land cover database, phenology and emission potential, and (2) a PFT-based land cover, phenology and emission potential. The resulting surface concentrations for both simulations are evaluated against observed surface pollen counts in five climatic subregions. Given prescribed pollen emissions, the RegCM4 simulates observed concentrations within an order of magnitude, although the performance of the simulations in any subregion is strongly related to the land cover representation and the number of observation sites used to create the empirical phenological relationship. The taxa-based model provides a better representation of the phenology of tree-based pollen counts than the PFT-based model, however we note that the PFT-based version provides a useful and climate-flexible emissions model for the general representation of the pollen phenology over the United States.


2016 ◽  
Vol 155 (3) ◽  
pp. 407-420 ◽  
Author(s):  
R. S. SILVA ◽  
L. KUMAR ◽  
F. SHABANI ◽  
M. C. PICANÇO

SUMMARYTomato (Solanum lycopersicum L.) is one of the most important vegetable crops globally and an important agricultural sector for generating employment. Open field cultivation of tomatoes exposes the crop to climatic conditions, whereas greenhouse production is protected. Hence, global warming will have a greater impact on open field cultivation of tomatoes rather than the controlled greenhouse environment. Although the scale of potential impacts is uncertain, there are techniques that can be implemented to predict these impacts. Global climate models (GCMs) are useful tools for the analysis of possible impacts on a species. The current study aims to determine the impacts of climate change and the major factors of abiotic stress that limit the open field cultivation of tomatoes in both the present and future, based on predicted global climate change using CLIMatic indEX and the A2 emissions scenario, together with the GCM Commonwealth Scientific and Industrial Research Organisation (CSIRO)-Mk3·0 (CS), for the years 2050 and 2100. The results indicate that large areas that currently have an optimum climate will become climatically marginal or unsuitable for open field cultivation of tomatoes due to progressively increasing heat and dry stress in the future. Conversely, large areas now marginal and unsuitable for open field cultivation of tomatoes will become suitable or optimal due to a decrease in cold stress. The current model may be useful for plant geneticists and horticulturalists who could develop new regional stress-resilient tomato cultivars based on needs related to these modelling projections.


Geosciences ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 255 ◽  
Author(s):  
Thomas J. Bracegirdle ◽  
Florence Colleoni ◽  
Nerilie J. Abram ◽  
Nancy A. N. Bertler ◽  
Daniel A. Dixon ◽  
...  

Quantitative estimates of future Antarctic climate change are derived from numerical global climate models. Evaluation of the reliability of climate model projections involves many lines of evidence on past performance combined with knowledge of the processes that need to be represented. Routine model evaluation is mainly based on the modern observational period, which started with the establishment of a network of Antarctic weather stations in 1957/58. This period is too short to evaluate many fundamental aspects of the Antarctic and Southern Ocean climate system, such as decadal-to-century time-scale climate variability and trends. To help address this gap, we present a new evaluation of potential ways in which long-term observational and paleo-proxy reconstructions may be used, with a particular focus on improving projections. A wide range of data sources and time periods is included, ranging from ship observations of the early 20th century to ice core records spanning hundreds to hundreds of thousands of years to sediment records dating back 34 million years. We conclude that paleo-proxy records and long-term observational datasets are an underused resource in terms of strategies for improving Antarctic climate projections for the 21st century and beyond. We identify priorities and suggest next steps to addressing this.


2018 ◽  
Vol 32 (1) ◽  
pp. 195-212 ◽  
Author(s):  
Sicheng He ◽  
Jing Yang ◽  
Qing Bao ◽  
Lei Wang ◽  
Bin Wang

AbstractRealistic reproduction of historical extreme precipitation has been challenging for both reanalysis and global climate model (GCM) simulations. This work assessed the fidelities of the combined gridded observational datasets, reanalysis datasets, and GCMs [CMIP5 and the Chinese Academy of Sciences Flexible Global Ocean–Atmospheric Land System Model–Finite-Volume Atmospheric Model, version 2 (FGOALS-f2)] in representing extreme precipitation over East China. The assessment used 552 stations’ rain gauge data as ground truth and focused on the probability distribution function of daily precipitation and spatial structure of extreme precipitation days. The TRMM observation displays similar rainfall intensity–frequency distributions as the stations. However, three combined gridded observational datasets, four reanalysis datasets, and most of the CMIP5 models cannot capture extreme precipitation exceeding 150 mm day−1, and all underestimate extreme precipitation frequency. The observed spatial distribution of extreme precipitation exhibits two maximum centers, located over the lower-middle reach of Yangtze River basin and the deep South China region, respectively. Combined gridded observations and JRA-55 capture these two centers, but ERA-Interim, MERRA, and CFSR and almost all CMIP5 models fail to capture them. The percentage of extreme rainfall in the total rainfall amount is generally underestimated by 25%–75% in all CMIP5 models. Higher-resolution models tend to have better performance, and physical parameterization may be crucial for simulating correct extreme precipitation. The performances are significantly improved in the newly released FGOALS-f2 as a result of increased resolution and a more realistic simulation of moisture and heating profiles. This work pinpoints the common biases in the combined gridded observational datasets and reanalysis datasets and helps to improve models’ simulation of extreme precipitation, which is critically important for reliable projection of future changes in extreme precipitation.


Climate ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 102 ◽  
Author(s):  
Temitope S. Egbebiyi ◽  
Chris Lennard ◽  
Olivier Crespo ◽  
Phillip Mukwenha ◽  
Shakirudeen Lawal ◽  
...  

The changing climate is posing significant threats to agriculture, the most vulnerable sector, and the main source of livelihood in West Africa. This study assesses the impact of the climate-departure on the crop suitability and planting month over West Africa. We used 10 CMIP5 Global climate models bias-corrected simulations downscaled by the CORDEX regional climate model, RCA4 to drive the crop suitability model, Ecocrop. We applied the concept of the crop-climate departure (CCD) to evaluate future changes in the crop suitability and planting month for five crop types, cereals, legumes, fruits, root and tuber and horticulture over the historical and future months. Our result shows a reduction (negative linear correlation) and an expansion (positive linear correlation) in the suitable area and crop suitability index value in the Guinea-Savanna and Sahel (southern Sahel) zone, respectively. The horticulture crop was the most negatively affected with a decrease in the suitable area while cereals and legumes benefited from the expansion in suitable areas into the Sahel zone. In general, CCD would likely lead to a delay in the planting season by 2–4 months except for the orange and early planting dates by about 2–3 months for cassava. No projected changes in the planting month are observed for the plantain and pineapple which are annual crops. The study is relevant for a short and long-term adaptation option and planning for future changes in the crop suitability and planting month to improve food security in the region.


1998 ◽  
Vol 27 ◽  
pp. 565-570 ◽  
Author(s):  
William M. Connolley ◽  
Siobhan P. O'Farrell

We compare observed temperature variations in Antarctica with climate-model runs over the last century. The models used are three coupled global climate models (GCMs) — the UKMO, the CSIRO and the MPI forced by the CO2 increases observed over the last century, and an atmospheric model experiment forced with observed sea-surface temperatures and sea-ice extents over the last century. Despite some regions of agreement, in general the GCM runs appear to be incompatible with each other and with the observations, although the short observational record and high natural variability make verification difficult. One of the best places for a more detailed study is the Antarctic Peninsula where the density of stations is higher and station records are longer than elsewhere in Antarctica. Observations show that this area has seen larger temperature rises than anywhere else in Antarctica. None of the three GCMs simulate such large temperature changes in the Peninsula region, in either climate-change runs radiatively forced by CO2 increases or control runs which assess the level of model variability.


2019 ◽  
Vol 32 (13) ◽  
pp. 4089-4102 ◽  
Author(s):  
Ryan J. Kramer ◽  
Brian J. Soden ◽  
Angeline G. Pendergrass

Abstract We analyze the radiative forcing and radiative response at Earth’s surface, where perturbations in the radiation budget regulate the atmospheric hydrological cycle. By applying a radiative kernel-regression technique to CMIP5 climate model simulations where CO2 is instantaneously quadrupled, we evaluate the intermodel spread in surface instantaneous radiative forcing, radiative adjustments to this forcing, and radiative responses to surface warming. The cloud radiative adjustment to CO2 forcing and the temperature-mediated cloud radiative response exhibit significant intermodel spread. In contrast to its counterpart at the top of the atmosphere, the temperature-mediated cloud radiative response at the surface is found to be positive in some models and negative in others. Also, the compensation between the temperature-mediated lapse rate and water vapor radiative responses found in top-of-atmosphere calculations is not present for surface radiative flux changes. Instantaneous radiative forcing at the surface is rarely reported for model simulations; as a result, intermodel differences have not previously been evaluated in global climate models. We demonstrate that the instantaneous radiative forcing is the largest contributor to intermodel spread in effective radiative forcing at the surface. We also find evidence of differences in radiative parameterizations in current models and argue that this is a significant, but largely overlooked, source of bias in climate change simulations.


Sign in / Sign up

Export Citation Format

Share Document