scholarly journals Sensitivity of mid-Pliocene climate to changes in orbital forcing, and PlioMIP's boundary conditions

Author(s):  
Eric Samakinwa ◽  
Christian Stepanek ◽  
Gerrit Lohmann

Abstract. In this study, we compare results obtained from modelling the mid-Pliocene warm period using the Community Earth System Models (COSMOS, version: COSMOS-landveg r2413, 2009) with the two different modelling methodologies and sets of boundary conditions prescribed for the two phases of the Pliocene Model Intercomparison Project (PlioMIP), tagged PlioMIP1 and PlioMIP2. Boundary conditions, model forcing, and modelling methodology for the two phases of PlioMIP differ considerably in palaeogeography, in particular with regards to the state of ocean gateways, ice-masks, treatment of vegetation and topography. Further differences between model setups as suggested for PlioMIP1 and PlioMIP2 consider updates to the concentration of trace gases: atmospheric carbon dioxide (CO2), is specified as 405 and 400 parts per million by volume (ppmv) for PlioMIP1 and PlioMIP2, respectively. There are also minor differences in the concentrations of methane (CH4) and nitrous oxide (N2O) due to changes in the protocol of the Paleoclimate Model Intercomparison Project (PMIP) from phase 3 to phase 4. Employing a single model across two phases of PlioMIP enables a better understanding of the impact that the various differences in modelling methodology between PlioMIP1 and PlioMIP2 have on model output. Yet, a dedicated comparison of COSMOS model output of PlioMIP1 and PlioMIP2 is not in the curriculum of model analyses proposed in PlioMIP2. Here, we bridge the gap between our contributions to PlioMIP1 (Stepanek and Lohmann, 2012) and PlioMIP2 (Stepanek et al., 2020). We highlight some of the effects that differences in the chosen mid-Pliocene model setup (PlioMIP2 vs. PlioMIP1) have on the climate state as derived with the COSMOS, as this information will be valuable in the framework of the model-model and model-data-comparison within PlioMIP2. We evaluate the model sensitivity to improved mid-Pliocene boundary conditions using PlioMIP's core mid-Pliocene experiments for PlioMIP1 and PlioMIP2, and present further simulations where we test model sensitivity to variations in palaeogeography, orbit and concentration of CO2. Firstly, we highlight major changes in boundary conditions from PlioMIP1 to PlioMIP2 and also the challenges recorded from the initial effort. The results derived from our simulations show that COSMOS simulates a mid-Pliocene climate state that is 0.29 K colder in PlioMIP2, if compared to PlioMIP1 (17.82 °C in PlioMIP1, 17.53 °C in PlioMIP2, values based on simulated surface skin temperature). On one hand, high-latitude warming, which is supported by proxy evidence of the mid-Pliocene, is underestimated in simulations of both PlioMIP1 and PlioMIP2. On the other hand, spatial variations in surface air temperature (SAT), sea surface temperature (SST) as well as the distribution of sea ice suggest improvement of simulated SAT and SST in PlioMIP2 if employing the updated palaeogeography. Our PlioMIP2 mid-Pliocene simulation produces warmer SSTs in the Arctic and North Atlantic Ocean than derived from the respective PlioMIP1 climate state. The difference in prescribed CO2 accounts for 1.1 K of warming in the Arctic, leading to an ice-free summer in the PlioMIP1 simulation, and a quasi ice-free summer in PlioMIP2. Beyond the official set of PlioMIP2 simulations, we present further simulations and analyses that sample the phase space of potential alternative orbital forcings that have acted during the Pliocene and may have impacted on geological records. Employing orbital forcing, which differ from that proposed for PlioMIP2 (i.e. corresponding to Pre-Industrial conditions) but falls into the Mid-Pliocene time period targeted in the PlioMIP, leads to pronounced annual and seasonal temperature variations, which are not directly retrievable from the marine and terrestrial reconstruction of the time-slice.

2020 ◽  
Vol 16 (4) ◽  
pp. 1643-1665 ◽  
Author(s):  
Eric Samakinwa ◽  
Christian Stepanek ◽  
Gerrit Lohmann

Abstract. We compare results obtained from modeling the mid-Pliocene warm period using the Community Earth System Models (COSMOS, version: COSMOS-landveg r2413, 2009) with the two different modeling methodologies and sets of boundary conditions prescribed for the two phases of the Pliocene Model Intercomparison Project (PlioMIP), tagged PlioMIP1 and PlioMIP2. Here, we bridge the gap between our contributions to PlioMIP1 (Stepanek and Lohmann, 2012) and PlioMIP2 (Stepanek et al., 2020). We highlight some of the effects that differences in the chosen mid-Pliocene model setup (PlioMIP2 vs. PlioMIP1) have on the climate state as derived with COSMOS, as this information will be valuable in the framework of the model–model and model–data comparison within PlioMIP2. We evaluate the model sensitivity to improved mid-Pliocene boundary conditions using PlioMIP's core mid-Pliocene experiments for PlioMIP1 and PlioMIP2 and present further simulations in which we test model sensitivity to variations in paleogeography, orbit, and the concentration of CO2. Firstly, we highlight major changes in boundary conditions from PlioMIP1 to PlioMIP2 and also the challenges recorded from the initial effort. The results derived from our simulations show that COSMOS simulates a mid-Pliocene climate state that is 0.29 ∘C colder in PlioMIP2 if compared to PlioMIP1 (17.82 ∘C in PlioMIP1, 17.53 ∘C in PlioMIP2; values based on simulated surface skin temperature). On the one hand, high-latitude warming, which is supported by proxy evidence of the mid-Pliocene, is underestimated in simulations of both PlioMIP1 and PlioMIP2. On the other hand, spatial variations in surface air temperature (SAT), sea surface temperature (SST), and the distribution of sea ice suggest improvement of simulated SAT and SST in PlioMIP2 if employing the updated paleogeography. Our PlioMIP2 mid-Pliocene simulation produces warmer SSTs in the Arctic and North Atlantic Ocean than those derived from the respective PlioMIP1 climate state. The difference in prescribed CO2 accounts for 0.5 ∘C of temperature difference in the Arctic, leading to an ice-free summer in the PlioMIP1 simulation, and a quasi ice-free summer in PlioMIP2. Beyond the official set of PlioMIP2 simulations, we present further simulations and analyses that sample the phase space of potential alternative orbital forcings that have acted during the Pliocene and may have impacted geological records. Employing orbital forcing, which differs from that proposed for PlioMIP2 (i.e., corresponding to pre-industrial conditions) but falls into the mid-Pliocene time period targeted in PlioMIP, leads to pronounced annual and seasonal temperature variations. Our result identifies the changes in mid-Pliocene paleogeography from PRISM3 to PRISM4 as the major driver of the mid-Pliocene warmth within PlioMIP and not the minor differences in forcings.


2020 ◽  
Vol 16 (4) ◽  
pp. 1523-1545 ◽  
Author(s):  
Wing-Le Chan ◽  
Ayako Abe-Ouchi

Abstract. The second phase of the Pliocene Model Intercomparison Project (PlioMIP2) has attracted many climate modelling groups in its continuing efforts to better understand the climate of the mid-Piacenzian warm period (mPWP) when atmospheric CO2 was last closest to present-day levels. Like the first phase, PlioMIP1, it is an internationally coordinated initiative that allows for a systematic comparison of various models in a similar manner to the Paleoclimate Modelling Intercomparison Project (PMIP). Model intercomparison and model–data comparison now focus specifically on the interglacial at marine isotope stage KM5c (3.205 Ma), and experimental design is not only based on new boundary conditions but includes various sensitivity experiments. In this study, we present results from long-term model integrations using the MIROC4m (Model for Interdisciplinary Research on Climate) atmosphere–ocean coupled general circulation model, developed at the institutes CCSR, NIES and FRCGC in Japan. The core experiment, with CO2 levels set to 400 ppm, shows a warming of 3.1 ∘C compared to the pre-industrial period, with two-thirds of the warming being attributed to the increase in CO2. Although this level of warming is less than that in the equivalent PlioMIP1 experiment, there is slightly better agreement with proxy sea surface temperature (SST) data at PRISM3 (PRISM – Pliocene Research Interpretation and Synoptic Mapping) locations, especially in the northern North Atlantic where there were large model–data discrepancies in PlioMIP1. Similar spatial changes in precipitation and sea ice are seen and the Arctic remains ice-free in the summer in the core experiments of both phases. Comparisons with both the proxy SST data and proxy surface air temperature data from paleobotanical sites indicate a weaker polar amplification in model results. Unlike PlioMIP1, the Atlantic Meridional Overturning Circulation (AMOC) is now stronger than that of the pre-industrial period, even though increasing CO2 tends to weaken it. This stronger AMOC is a consequence of a closed Bering Strait in the PlioMIP2 paleogeography. Also, when present-day boundary conditions are replaced by those of the Pliocene, the dependency of the AMOC strength on CO2 is significantly weakened. Sensitivity tests show that lower values of CO2 give a global SST which is overall more consistent with the PRISM3 SST field presented in PlioMIP1, while SSTs at many of the PRISM4 sites are still too high to be reconciled with any of the model results. On the other hand, tropical Pacific SST in the core experiment agrees well with more recent proxy data, which suggested that PRISM3 SST there was overestimated. Future availability of climate reconstructions from proxy data will continue to help evaluate model results. The inclusion of dynamical vegetation and the effects of all possible extreme orbital configurations outside KM5c should be considered in future experiments using MIROC4m for the mPWP.


Author(s):  
Bian He ◽  
Xiaoqi Zhang ◽  
Anmin Duan ◽  
Qing Bao ◽  
Yimin Liu ◽  
...  

AbstractLarge-ensemble simulations of the atmosphere-only time-slice experiments for the Polar Amplification Model Intercomparison Project (PAMIP) were carried out by the model group of the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-f3-L). Eight groups of experiments forced by different combinations of the sea surface temperature (SST) and sea ice concentration (SIC) for pre-industrial, present-day, and future conditions were performed and published. The time-lag method was used to generate the 100 ensemble members, with each member integrating from 1 April 2000 to 30 June 2001 and the first two months as the spin-up period. The basic model responses of the surface air temperature (SAT) and precipitation were documented. The results indicate that Arctic amplification is mainly caused by Arctic SIC forcing changes. The SAT responses to the Arctic SIC decrease alone show an obvious increase over high latitudes, which is similar to the results from the combined forcing of SST and SIC. However, the change in global precipitation is dominated by the changes in the global SST rather than SIC, partly because tropical precipitation is mainly driven by local SST changes. The uncertainty of the model responses was also investigated through the analysis of the large-ensemble members. The relative roles of SST and SIC, together with their combined influence on Arctic amplification, are also discussed. All of these model datasets will contribute to PAMIP multi-model analysis and improve the understanding of polar amplification.


2011 ◽  
Vol 4 (3) ◽  
pp. 571-577 ◽  
Author(s):  
A. M. Haywood ◽  
H. J. Dowsett ◽  
M. M. Robinson ◽  
D. K. Stoll ◽  
A. M. Dolan ◽  
...  

Abstract. The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (3.29 to 2.97 million yr ago). This project is referred to as PlioMIP (the Pliocene Model Intercomparison Project). Two experiments have been agreed upon and together compose the initial phase of PlioMIP. The first (Experiment 1) is being performed with atmosphere-only climate models. The second (Experiment 2) utilises fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.


2015 ◽  
Vol 8 (9) ◽  
pp. 2841-2856 ◽  
Author(s):  
S. Miyazaki ◽  
K. Saito ◽  
J. Mori ◽  
T. Yamazaki ◽  
T. Ise ◽  
...  

Abstract. As part of the terrestrial branch of the Japan-funded Arctic Climate Change Research Project (GRENE-TEA), which aims to clarify the role and function of the terrestrial Arctic in the climate system and assess the influence of its changes on a global scale, this model intercomparison project (GTMIP) is designed to (1) enhance communication and understanding between the modelling and field scientists and (2) assess the uncertainty and variations stemming from variability in model implementation/design and in model outputs using climatic and historical conditions in the Arctic terrestrial regions. This paper provides an overview of all GTMIP activity, and the experiment protocol of Stage 1, which is site simulations driven by statistically fitted data created using the GRENE-TEA site observations for the last 3 decades. The target metrics for the model evaluation cover key processes in both physics and biogeochemistry, including energy budgets, snow, permafrost, phenology, and carbon budgets. Exemplary results for distributions of four metrics (annual mean latent heat flux, annual maximum snow depth, gross primary production, and net ecosystem production) and for seasonal transitions are provided to give an outlook of the planned analysis that will delineate the inter-dependence among the key processes and provide clues for improving model performance.


2016 ◽  
Vol 9 (8) ◽  
pp. 2853-2880 ◽  
Author(s):  
Chris D. Jones ◽  
Vivek Arora ◽  
Pierre Friedlingstein ◽  
Laurent Bopp ◽  
Victor Brovkin ◽  
...  

Abstract. Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks are potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate–carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate–carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This paper documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.


2013 ◽  
Vol 6 (5) ◽  
pp. 1705-1714 ◽  
Author(s):  
J. Xu ◽  
L. Zhao ◽  

Abstract. On the basis of the fifth Coupled Model Intercomparison Project (CMIP5) and the climate model simulations covering 1979 through 2005, the temperature trends and their uncertainties have been examined to note the similarities or differences compared to the radiosonde observations, reanalyses and the third Coupled Model Intercomparison Project (CMIP3) simulations. The results show noticeable discrepancies for the estimated temperature trends in the four data groups (radiosonde, reanalysis, CMIP3 and CMIP5), although similarities can be observed. Compared to the CMIP3 model simulations, the simulations in some of the CMIP5 models were improved. The CMIP5 models displayed a negative temperature trend in the stratosphere closer to the strong negative trend seen in the observations. However, the positive tropospheric trend in the tropics is overestimated by the CMIP5 models relative to CMIP3 models. While some of the models produce temperature trend patterns more highly correlated with the observed patterns in CMIP5, the other models (such as CCSM4 and IPSL_CM5A-LR) exhibit the reverse tendency. The CMIP5 temperature trend uncertainty was significantly reduced in most areas, especially in the Arctic and Antarctic stratosphere, compared to the CMIP3 simulations. Similar to the CMIP3, the CMIP5 simulations overestimated the tropospheric warming in the tropics and Southern Hemisphere and underestimated the stratospheric cooling. The crossover point where tropospheric warming changes into stratospheric cooling occurred near 100 hPa in the tropics, which is higher than in the radiosonde and reanalysis data. The result is likely related to the overestimation of convective activity over the tropical areas in both the CMIP3 and CMIP5 models. Generally, for the temperature trend estimates associated with the numerical models including the reanalyses and global climate models, the uncertainty in the stratosphere is much larger than that in the troposphere, and the uncertainty in the Antarctic is the largest. In addition, note that the reanalyses show the largest uncertainty in the lower tropical stratosphere, and the CMIP3 simulations show the largest uncertainty in both the south and north polar regions.


2020 ◽  
Vol 14 (9) ◽  
pp. 3155-3174 ◽  
Author(s):  
Eleanor J. Burke ◽  
Yu Zhang ◽  
Gerhard Krinner

Abstract. Permafrost is a ubiquitous phenomenon in the Arctic. Its future evolution is likely to control changes in northern high-latitude hydrology and biogeochemistry. Here we evaluate the permafrost dynamics in the global models participating in the Coupled Model Intercomparison Project (present generation – CMIP6; previous generation – CMIP5) along with the sensitivity of permafrost to climate change. Whilst the northern high-latitude air temperatures are relatively well simulated by the climate models, they do introduce a bias into any subsequent model estimate of permafrost. Therefore evaluation metrics are defined in relation to the air temperature. This paper shows that the climate, snow and permafrost physics of the CMIP6 multi-model ensemble is very similar to that of the CMIP5 multi-model ensemble. The main differences are that a small number of models have demonstrably better snow insulation in CMIP6 than in CMIP5 and a small number have a deeper soil profile. These changes lead to a small overall improvement in the representation of the permafrost extent. There is little improvement in the simulation of maximum summer thaw depth between CMIP5 and CMIP6. We suggest that more models should include a better-resolved and deeper soil profile as a first step towards addressing this. We use the annual mean thawed volume of the top 2 m of the soil defined from the model soil profiles for the permafrost region to quantify changes in permafrost dynamics. The CMIP6 models project that the annual mean frozen volume in the top 2 m of the soil could decrease by 10 %–40 %∘C-1 of global mean surface air temperature increase.


2020 ◽  
Author(s):  
Wing-Le Chan ◽  
Ayako Abe-Ouchi

Abstract. The second phase of the Pliocene Model Intercomparison Project (PlioMIP2) has attracted many climate modelling groups in its continuing efforts to better understand the climate of the mid-Piacenzian warm period (mPWP) when atmospheric CO2 was last closest to present day levels. Like the first phase, PlioMIP1, it is an internationally coordinated initiative that allows for a systematic comparison of various models in a similar manner to PMIP. Model intercomparison and model-data comparison now focus specifically on the interglacial at marine isotope stage KM5c (3.205 Ma) and experimental design is not only based on new boundary conditions but includes various sensitivity experiments. In this study, we present results from long-term model integrations using the MIROC4m atmosphere-ocean coupled general circulation model, developed at the institutes CCSR/NIES/FRCGC in Japan. The core experiment, with CO2 levels set to 400 ppm, shows a warming of 3.1 °C compared to the Pre-Industrial, with two-thirds of the warming being contributed by the increase in CO2. Although this level of warming is less than that in the equivalent PlioMIP1 experiment, there is a slightly better agreement with proxy sea surface temperature (SST) data at PRISM3 locations, especially in the northern North Atlantic where there were large model-data discrepancies in PlioMIP1. Similar changes in precipitation and sea ice are seen and the Arctic remains ice-free in the summer. However, unlike PlioMIP1, the Atlantic Meridional Overturning Circulation (AMOC) is now stronger than that of the Pre-Industrial, even though increasing CO2 tends to weaken it. This stronger AMOC is a consequence of a closed Bering Strait in the PlioMIP2 paleogeography. Also, when present day boundary conditions are replaced by those of the Pliocene, the dependency of the AMOC strength on CO2 is significantly weakened. Sensitivity tests show that lower values of CO2 give a global SST which is overall more consistent with the PRISM3 SST field presented in PlioMIP1. Inclusion of dynamical vegetation and the effects of all realistic orbital configurations should be considered in future experiments using MIROC4m for the mPWP.


Sign in / Sign up

Export Citation Format

Share Document