Quantitative reconstruction of landscape dynamics and tectonics from sediment calibre and architecture: an example from the Kerinitis megadelta, Gulf of Corinth, Greece

Author(s):  
Daniel Hobley ◽  
Alexander Whittaker

<p>In tectonically active landscapes, fault movement drives both the creation of accommodation space (i.e., basins), and the production of topography on which geomorphic processes act (i.e., mountains). The action of fluvial processes on those mountains will route eroded sediment into the basins; in many extensional mountain belts, this leads to the deposition of coarse alluvial fans or Gilbert deltas in the hanging-walls of normal faults as they slip and create accommodation space. The stratigraphic architecture and sedimentary characteristics of such deposits clearly respond to and thus in principle can record the tectono-climatic environment controlling the system. This implies that key stratigraphic variables, such as grain size and unit thicknesses, can be quantitatively inverted to recover a tectono-climatic history. However, confounding variables also active in erosional-depositional systems (e.g., far-field base level control, stochastic processes, signal degradation during transport) may complicate attempts to decode this archive and may buffer or shred tectono-climatic signals before they are preserved.</p><p>The well-exposed early to middle Pleistocene deltaic stratigraphy of the Corinth Rift, central Greece, provides a rare opportunity to test these ideas quantitatively. Here, we present a preliminary data set attempting to decode the geomorphic and hence tectono-climatic history of a key section of the rift directly from the grain size and architecture of a very large (~500 m thick), fault controlled, and now uplifted Gilbert delta in the Kerinitis valley, located on the southern margin of the Gulf of Corinth. We used a series of high-resolution drone surveys to obtain 27 vertical transects through the incised delta, from which detailed grain size and sediment thickness data were obtained from photogrammetric analyses (~10,000 images). Our data enabled us to produce a highly detailed correlation of stratal horizons within the deltaic package, from which we were able to describe the evolution of grain size trends both downstream and through the ca. 800 ky lifespan of the delta. We are able to resolve a marked acceleration of the driving fault from the delta stratigraphy itself, which is recorded in a sudden increase in downstream fining rate, driven by more rapid extraction of sediment from the river supplying material to the delta. The timing of this increase correlates with independent constraints from stratigraphic form on the onset of “rift climax” in this delta. Post fault acceleration, we demonstrate that the fining rates begin to fall back, consistent with transient response to tectonic perturbation in the upstream catchment and with a wave of incision sweeping up through the terrestrial system. Our results demonstrate that sophisticated insights into fault evolution can be drawn from deltaic stratigraphy, and emphasise the importance of transient landscape response in creating rift zone sedimentary archives.</p>

2021 ◽  
Vol 13 (9) ◽  
pp. 4848
Author(s):  
Liwei Wu ◽  
Xinling Li ◽  
Qinghai Xu ◽  
Manyue Li ◽  
Qiufeng Zheng ◽  
...  

The East Asian monsoon system is an important part of global atmospheric circulation; however, records of the East Asian monsoon from different regions exhibit different evolutionary rhythms. Here, we show a high-resolution record of grain size and pollen data from a lacustrine sediment core of Dajiuhu Lake in Shennongjia, Hubei Province, China, in order to reconstruct the paleovegetation and paleoeclimate evolution of the Dajiuhu Basin since the late Middle Pleistocene (~237.9 ka to the present). The results show that grain size and pollen record of the core DJH-2 are consistent with the δ18O record of stalagmites from Sanbao Cave in the same area, which is closely related to the changes of insolation at the precessional (~20-kyr) scale in the Northern Hemisphere. This is different from the records of the Asian summer monsoon recorded in the Loess Plateau of North China, which exhibited dominant 100-kyr change cyclicities. We suggest that the difference between paleoclimatic records from North and South China is closely related to the east–west-oriented mountain ranges of the Qinling Mountains in central China that blocked weakened East Asia summer monsoons across the mountains during glacial periods.


Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 323-340 ◽  
Author(s):  
Sascha Schneiderwind ◽  
Jack Mason ◽  
Thomas Wiatr ◽  
Ioannis Papanikolaou ◽  
Klaus Reicherter

Abstract. Two normal faults on the island of Crete and mainland Greece were studied to test an innovative workflow with the goal of obtaining a more objective palaeoseismic trench log, and a 3-D view of the sedimentary architecture within the trench walls. Sedimentary feature geometries in palaeoseismic trenches are related to palaeoearthquake magnitudes which are used in seismic hazard assessments. If the geometry of these sedimentary features can be more representatively measured, seismic hazard assessments can be improved. In this study more representative measurements of sedimentary features are achieved by combining classical palaeoseismic trenching techniques with multispectral approaches. A conventional trench log was firstly compared to results of ISO (iterative self-organising) cluster analysis of a true colour photomosaic representing the spectrum of visible light. Photomosaic acquisition disadvantages (e.g. illumination) were addressed by complementing the data set with active near-infrared backscatter signal image from t-LiDAR measurements. The multispectral analysis shows that distinct layers can be identified and it compares well with the conventional trench log. According to this, a distinction of adjacent stratigraphic units was enabled by their particular multispectral composition signature. Based on the trench log, a 3-D interpretation of attached 2-D ground-penetrating radar (GPR) profiles collected on the vertical trench wall was then possible. This is highly beneficial for measuring representative layer thicknesses, displacements, and geometries at depth within the trench wall. Thus, misinterpretation due to cutting effects is minimised. This manuscript combines multiparametric approaches and shows (i) how a 3-D visualisation of palaeoseismic trench stratigraphy and logging can be accomplished by combining t-LiDAR and GPR techniques, and (ii) how a multispectral digital analysis can offer additional advantages to interpret palaeoseismic and stratigraphic data. The multispectral data sets are stored allowing unbiased input for future (re)investigations.


2001 ◽  
Vol 34 (1) ◽  
pp. 235 ◽  
Author(s):  
N. FLOTTÉ ◽  
D. SOREL

Structural mapping in northern Peloponnesus reveals the emergence of an E-W striking, more than 70km long, low angle detachment fault dipping to the north beneath the Gulf of Corinth. This paper describes four north-south structural cross-sections in northern Peloponnesus. Structural and sedimentological field observations show that in the studied area the normal faults of northern Peloponnesus branch at depth on this major low angle north-dipping brittle detachment. The southern part of the detachment and the related normal faults are now inactive. To the north, the active Helike and Aigion normal faults are connected at depth with the seismically active northern part of the detachment beneath the Gulf of Corinth.


2021 ◽  
Author(s):  
Mark Coleman ◽  
Bernhard Grasemann ◽  
David Schneider ◽  
Konstantinos Soukis ◽  
Riccardo Graziani

<p>Microstructures may be used to determine the processes, conditions and kinematics under which deformation occurred. For a given set of these variables, different microstructures are observed in various materials due to the material’s physical properties. Dolomite is a major rock forming mineral, yet the mechanics of dolomite are understudied compared to other ubiquitous minerals such as quartz, feldspar, and calcite. Our new study uses petrographic, structural and electron back scatter diffraction analyses on a series of dolomitic and calcitic mylonites to document differences in deformation styles under similar metamorphic conditions. The Attic-Cycladic Crystalline Complex, Greece, comprises a series of core complexes wherein Miocene low-angle detachment systems offset and juxtapose a footwall of high-pressure metamorphosed rocks against a low-grade hanging wall. This recent tectonic history renders the region an excellent natural laboratory for studying the interplay of the processes that accommodate deformation. The bedrock of Mt. Hymittos, Attica, preserves a pair of ductile-then-brittle normal faults dividing a tripartite tectonostratigraphy. Field observations, mineral assemblages and observable microstructures suggests the tectonic packages decrease in metamorphic grade from upper greenschist facies (~470 °C at 0.8 GPa) in the stratigraphically lowest package to sub-greenschist facies in the stratigraphically highest package. Both low-angle normal faults exhibit cataclastic fault cores that grade into the schists and marbles of their respective hanging walls. The middle and lower tectonostratigraphic packages exhibit dolomitic and calcitic marbles that experienced similar geologic histories of subduction and exhumation. The mineralogically distinct units (calcite vs. dolomite) of the middle package deformed via different mechanisms under the same conditions within the same package and may be contrasted with mineralogically similar units that deformed under higher pressure and temperature conditions in the lower package. In the middle unit, dolomitic rocks are brittlely deformed. Middle unit calcitic marble are mylonitic to ultramylonitic with average grain sizes ranging from 30 to 8 μm. These mylonites evince grain-boundary migration and grain size reduction facilitated by subgrain rotation. Within the lower package, dolomitic and calcitic rocks are both mylonitic to ultramylonitic with grain sizes ranging from 28 to 5 μm and preserve clear crystallographic preferred orientation fabrics. Calcitic mylonites exhibit deformation microstructures similar to those of the middle unit. Distinctively, the dolomitic mylonites of the lower unit reveal ultramylonite bands cross-cutting and overprinting an older coarser mylonitic fabric. Correlated missorientation angles suggest these ultramylonites show evidence for grain size reduction accommodated by microfracturing and subgrain rotation. In other samples the dolomitic ultramylonite is the dominant fabric and is overprinting and causing boudinage of veins and relict coarse mylonite zones. Isolated interstitial calcite grains within dolomite ultramylonites are signatures of localized creep-cavitation processes. Following grain size reduction, grain boundary sliding dominantly accommodated further deformation in the ultramylonitic portions of the samples as indicated by randomly distributed correlated misorientation angles. This study finds that natural deformation of dolomitic rocks may occur by different mechanisms than those identified by published experiments; notably that grain-boundary migration and subgrain rotation may be active in dolomite at much lower temperatures than previously suggested.</p>


Geosciences ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 404 ◽  
Author(s):  
Leena Leppänen ◽  
Anna Kontu

Snow microstructure is an important factor for microwave and optical remote sensing of snow. One parameter used to describe it is the specific surface area (SSA), which is defined as the surface-area-to-mass ratio of snow grains. Reflectance at near infrared (NIR) and short-wave infrared (SWIR) wavelengths is sensitive to grain size and therefore also to SSA through the theoretical relationship between SSA and optical equivalent grain size. To observe SSA, the IceCube measures the hemispherical reflectance of a 1310 nm laser diode from the snow sample surface. The recently developed hand-held QualitySpec Trek (QST) instrument measures the almost bidirectional spectral reflectance in the range of 350–2500 nm with direct contact to the object. The geometry is similar to the Contact Probe, which was previously used successfully for snow measurements. The collected data set includes five snow pit measurements made using both IceCube and QST in a taiga snowpack in spring 2017 in Sodankylä, Finland. In this study, the correlation between SSA and a ratio of 1260 nm reflectance to differentiate between 1260 nm and 1160 nm reflectances is researched. The correlation coefficient varied between 0.85 and 0.98, which demonstrates an empirical linear relationship between SSA and reflectance observations of QST.


2020 ◽  
Vol 8 (3) ◽  
pp. SL71-SL78
Author(s):  
Qiao Su ◽  
Yanhui Zhu ◽  
Fang Hu ◽  
Xingyong Xu

Grain size is one of the most important records for sedimentary environment, and researchers have made remarkable progress in the interpretation of sedimentary environments by grain size analysis in the past few decades. However, these advances often depend on the personal experience of the scholars and combination with other methods used together. Here, we constructed a prediction model using the K-nearest neighbors algorithm, one of the machine learning methods, which can predict the sedimentary environments of one core through a known core. Compared to the results of other studies based on the comprehensive data set of grain size and four other indicators, this model achieved a high precision value only using the grain size data. We have also compared our prediction model with other mainstream machine learning algorithms, and the experimental results of six evaluation metrics shed light on that this prediction model can achieve the higher precision. The main errors of the model reflect the length of the conversation area of sedimentary environment, which is controlled by the sedimentary dynamics. This model can provide a quick comparison method of the cores in a similar environment; thus, it may point out the preliminary guidance for further study.


2004 ◽  
Vol 159 (3) ◽  
pp. 1013-1031 ◽  
Author(s):  
D. Latorre ◽  
J. Virieux ◽  
T. Monfret ◽  
V. Monteiller ◽  
T. Vanorio ◽  
...  

Geology ◽  
2020 ◽  
Vol 48 (12) ◽  
pp. 1216-1220
Author(s):  
Drew T. Downs ◽  
Duane E. Champion ◽  
Patrick Muffler ◽  
Robert L. Christiansen ◽  
Michael A. Clynne ◽  
...  

Abstract Mapping and chronology are central to understanding spatiotemporal volcanic trends in diverse tectonic settings. The Cascades back arc in northern California (USA) hosts abundant lava flows and normal faults, but tholeiitic basalts older than 200 ka are difficult to discriminate by classic mapping methods. Paleomagnetism and chemistry offer independent means of correlating basalts, including the Tennant, Dry Lake, and Hammond Crossing basalt fields. Paleomagnetic analysis of these chemically similar basalts yield notable overlap, with statistical analysis yielding 7 chances in 1,000,000 that their similar mean remanent directions are random. These basalts also have overlapping 40Ar/39Ar ages of 272.5 ± 30.6 ka (Tennant), 305.8 ± 23.9 ka (Dry Lake), and 300.4 ± 15.2 and 322.6 ± 17.4 ka (Hammond Crossing). Chemical and paleomagnetic analyses indicate that these spatially distributed basalts represent simultaneous (<100 yr uncertainty) eruptions, and thus we use 305.5 ± 9.8 ka (weighted mean) as the eruption age. Their vents align on a N25°W trend over a distance of 39 km. Tennant erupted the largest volume (3.55 ± 0.75 km3) at the highest elevation; both factors decay to the south-southeast at Dry Lake (0.75 ± 0.15 km3) and Hammond Crossing (0.15 ± 0.05 km3). We propose vertical magma ascent beneath the Tennant vent area, where the most evolved, high-SiO2 magma erupted, with lateral dike propagation in the brittle crust. Propagation was near orthogonal to east-west extension (0.3–0.6 mm/yr) along north-northwest–trending normal faults.


2012 ◽  
Vol 77 (3) ◽  
pp. 335-343 ◽  
Author(s):  
Joyce Lundberg ◽  
Donald A. McFarlane

A distinctive white sediment in the caves of Mulu, Sarawak, Borneo is a well-preserved tephra, representing a fluvially transported surface air-fall deposit, re-deposited inside the caves. We show that the tephra is not the Younger Toba Tephra, formerly considered as most likely. The shards are rod-shaped with elongate tubular vesicles; the largest grains ~ 170 μm in length; of rhyolitic composition; and 87Sr/86Sr ratio of 0.70426 ± 0.00001. U–Th dating of associated calcites suggest that the tephra was deposited before 125 ± 4 ka, and probably before 156 ± 2 ka. Grain size and distance from closest potential source suggests an eruption of VEI 7. Prevailing winds, grain size, thickness of deposit, location of potential sources, and Sr isotopic ratio limit the source to the Philippines. Comparisons with the literature give the best match geochemically with layer 1822 from Ku et al. (2009a), dated by ocean core stratigraphy to 189 ka. This tephra represents a rare terrestrial repository indicating a very substantial Plinian/Ultra-Plinian eruption that covered the Mulu region of Borneo with ash, a region that rarely receives tephra from even the largest known eruptions in the vicinity. It likely will be a valuable chronostratigraphic marker for sedimentary, palaeontological and archaeological studies.


2006 ◽  
Vol 163 (2-3) ◽  
pp. 431-453 ◽  
Author(s):  
S. Gautier ◽  
D. Latorre ◽  
J. Virieux ◽  
A. Deschamps ◽  
C. Skarpelos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document