Continental and global hydro-climatic forecasting services to address user needs for the water-related sectors

Author(s):  
Thomas Bosshard ◽  
Berit Arheimer ◽  
Louise Crochemore ◽  
Frida Gyllensvärd ◽  
Ilias Pechlivanidis ◽  
...  

<p>Addressing the user needs at the local and large scales remains an ongoing scientific and operational effort to the various hydro-climatic service providers. The evolution of hydro-climatic services has received high attention, particularly given the recent scientific and computational advancements that have led to skillful meteorological forecasts at time horizons from sub-seasonal (up to 6 weeks ahead) to seasonal (up to a year ahead). Sub-seasonal to seasonal (S2S) forecasts have great potential for user groups that are affected by climatic variations and that could manage such variations to their advantage through better predictions. Therefore the Swedish Meteorological and Hydrological Institute co-developed with users from the water-related sectors a demonstrator interface to communicate the ensemble of pan-European and global hydro-climatic indicators at the catchment scale.</p><p> </p><p>Here we present these operational hydro-climatic services for the long time horizons, and focus on the setup, the implementation and the challenges. The provided hydro-climatic forecasts are based on the bias-adjusted meteorological forecasts from ECMWF (i.e. daily precipitation and daily mean, maximum and minimum temperature) and the pan-European E-HYPE and global WW-HYPE hydrological models (http://hypeweb.smhi.se/). The forecasts are updated frequently when the newly initialised forecasts become available. Hydro-climatic information for variables such as river flow, water discharge, actual and potential evapotranspiration, soil water content, precipitation and temperature is presented as maps and graphs, for both climatology and forecast period. The service provides also the option to download the forecast information (catchment scale) including also the metadata and forecast skill information. The map shows the anomaly for each catchment and lead time using as reference either the catchment’s normal conditions (based on terciles) or extremes (10<sup>th</sup> and 90<sup>th</sup> percentiles) for the period of interest. To overcome misinterpretation of the forecasted information, we set as default the option to the user to mask the catchments in which forecasts have no skill (based on re-forecast analysis); meaning that climatology is more predictive than ECMWF forecasts. The graphs display the median and different percentiles of the ensemble of forecasts, and the high and low thresholds of the normal and extreme conditions for the period of interest.</p><p> </p><p><strong>Keywords</strong></p><p>Seasonal hydro-meteorological forecasting, Copernicus C3S, global climate services</p>

2014 ◽  
Vol 15 (5) ◽  
pp. 2039-2049 ◽  
Author(s):  
Mark R. Jury

Abstract Hydrological fluctuations of Malawi’s Shire River and climatic drivers are studied for a range of time and space scales. The annual cycles of basin rainfall and river flow peak in summer and autumn, respectively. Satellite and model products at <50-km resolution resolve the water deficit in this narrow valley. The leading climate index fitting Shire River flow anomalies is the Climatic Research Unit (CRU) Palmer drought severity index, based on interpolated gauge rainfall minus Penman–Monteith potential evapotranspiration. Climate variables anticipate lake level changes by 2 months, while weather variables anticipate river flow surges by 2 days. Global climate patterns related to wet years include a Pacific La Niña cool phase and low pressure over northeastern Africa. Shire River floods coincide with a cyclonic looping wind pattern that amplifies the equatorial trough and draws monsoon flow from Tanzania. Hot spells are common in spring: daytime surface temperatures can reach 60°C causing rapid desiccation. An anticyclonic high pressure cell promotes evaporation losses of ~20 mm day−1 over brief periods. Flood and drought in Malawi are shown to be induced by the large-scale atmospheric circulation and rainfall in the surrounding highlands. Hence, early warning systems should consider satellite and radar coverage of the entire basin.


2014 ◽  
Vol 95 (9) ◽  
pp. 1431-1443 ◽  
Author(s):  
Stephan Bojinski ◽  
Michel Verstraete ◽  
Thomas C. Peterson ◽  
Carolin Richter ◽  
Adrian Simmons ◽  
...  

Climate research, monitoring, prediction, and related services rely on accurate observations of the atmosphere, land, and ocean, adequately sampled globally and over sufficiently long time periods. The Global Climate Observing System, set up under the auspices of United Nations organizations and the International Council for Science to help ensure the availability of systematic observations of climate, developed the concept of essential climate variables (ECVs). ECV data records are intended to provide reliable, traceable, observation-based evidence for a range of applications, including monitoring, mitigating, adapting to, and attributing climate changes, as well as the empirical basis required to understand past, current, and possible future climate variability. The ECV concept has been broadly adopted worldwide as the guiding basis for observing climate, including by the United Nations Framework Convention on Climate Change (UNFCCC), WMO, and space agencies operating Earth observation satellites. This paper describes the rationale for these ECVs and their current selection, based on the principles of feasibility, relevance, and cost effectiveness. It also provides a view of how the ECV concept could evolve as a guide for rational and evidence-based monitoring of climate and environment. Selected examples are discussed to highlight the benefits, limitations, and future evolution of this approach. The article is intended to assist program managers to set priorities for climate observation, dataset generation and related research: for instance, within the emerging Global Framework for Climate Services (GFCS). It also helps the observation community and individual researchers to contribute to systematic climate observation, by promoting understanding of ECV choices and the opportunities to influence their evolution.


2020 ◽  
Author(s):  
Louise Crochemore ◽  
Maria-Helena Ramos ◽  
Ilias Pechlivanidis

<p>Climatic variations can have a significant impact on a number of water-related sectors. Managing such variations through accurate predictions is thus crucial. Continental hydro-climate services have recently received attention to address various user needs. However, predictions for months ahead can be limited at catchment scale, highlighting the need for data tailoring. Here, we address how seasonal forecasts from continental services can be used to address user needs at the catchment scale. We compare a continentally-calibrated process-based model (E-HYPE) and a catchment-specific parsimonious model (GR6J) to forecast streamflow in a set of French catchments.</p><p>This work provides insights into UPH 20 (How can we disentangle and reduce model structural/parameter/input uncertainty in hydrological prediction?) by proposing a skill assessment framework that isolates gains from hydrological model forcings and forecast initialisation. Our results show that a good estimation of the hydrologic states, such as soil moisture or lake levels, prior to the prediction is the most important factor in obtaining accurate streamflow predictions in both setups. We also show that the spread in internal model states varies largely between the two systems, reflecting the differences in their setups and calibration strategies, and highlighting that caution is needed before extracting hydrologic variables other than streamflow.</p><p>This work also provides insights into UPH 21 (How can the (un)certainty in hydrological predictions be communicated to decision makers and the general public?). Despite the expected high performance from the catchment setup against observed streamflow, the continental setup can, in some catchments, match the catchment-specific setup for 3-month aggregations and when looking at statistics relative to model climatology, such as anomalies. Nevertheless, differences in the setups can result in different uncertainties for variables such as soil water content.</p>


Author(s):  
Valeriya Ovcharuk ◽  
Eugene Gopchenko ◽  
Nataliya Kichuk ◽  
Zhannetta Shakirzanova ◽  
Liliia Kushchenko ◽  
...  

Abstract. Nowadays, during the period of the global climate change, scientists around the world have noticed an increased incidence of extreme natural disasters. The authors of the study suggested methods of using climate change as a part of a genetic model of maximal floods runoff. This model makes possible the introducing of “climate changes” directly through the maximal stocks of snow and precipitation during the spring flood and runoff coefficients. The object of study is the basin of the Southern Bug – one of the largest rivers in Ukraine, which flows within two geographical zones – forest-steppe and steppe. Overall results using scenario RCP 4.5 showed a decrease of runoff by the end of 2050 from 20 % in the north part of the basin (the forest-steppe zone) to 50 % – in the south (the steppe part of basin). On the other hand, the characteristics of minimal river flow in the Southern Bug basin – winter and summer low waters had been analyzed. One option for low water flow simulation is to study the connection between the drought index (e.g. SPEI) and the minimal water. Studies show that such correlation exists, so knowing the forecast of drought index it is possible to project the value of minimal water discharge, which is the object of the research.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4406
Author(s):  
Tadaharu Ishikawa ◽  
Hiroshi Senoo

The development process and flood control effects of the open-levee system, which was constructed from the mid-18th to the mid-19th centuries, on the Kurobe Alluvial Fan—a large alluvial fan located on the Japan Sea Coast of Japan’s main island—was evaluated using numerical flow simulation. The topography for the numerical simulation was determined from an old pictorial map in the 18th century and various maps after the 19th century, and the return period of the flood hydrograph was determined to be 10 years judging from the level of civil engineering of those days. The numerical results suggested the followings: The levees at the first stage were made to block the dominant divergent streams to gather the river flows together efficiently; by the completed open-levee system, excess river flow over the main channel capacity was discharged through upstream levee openings to old stream courses which were used as temporary floodways, and after the flood peak, a part of the flooded water returned to the main channel through the downstream levee openings. It is considered that the ideas of civil engineers of those days to control the floods exceeding river channel capacity, embodied in their levee arrangement, will give us hints on how to control the extraordinary floods that we should face in the near future when the scale of storms will increase due to the global climate change.


2021 ◽  
Vol 183 ◽  
pp. 158-174
Author(s):  
Patrick Lloyd-Smith ◽  
Wiktor Adamowicz ◽  
Alicia Entem ◽  
Eli P. Fenichel ◽  
Mani Rouhi Rad

2013 ◽  
Vol 103 (3) ◽  
pp. 406-411 ◽  
Author(s):  
David E Fagnan ◽  
Jose Maria Fernandez ◽  
Andrew W Lo ◽  
Roger M Stein

Traditional financing sources such as private and public equity may not be ideal for investment projects with low probabilities of success, long time horizons, and large capital requirements. Nevertheless, such projects, if not too highly correlated, may yield attractive risk-adjusted returns when combined into a single portfolio. Such “megafund” portfolios may be too large to finance through private or public equity alone. But with sufficient diversification and risk analytics, debt financing via securitization may be feasible. Credit enhancements (i.e., derivatives and government guarantees) can also improve megafund economics. We present an analytical framework and illustrative empirical examples involving cancer research.


2017 ◽  
Vol 21 (5) ◽  
pp. 2579-2594 ◽  
Author(s):  
Hidayat Hidayat ◽  
Adriaan J. Teuling ◽  
Bart Vermeulen ◽  
Muh Taufik ◽  
Karl Kastner ◽  
...  

Abstract. Wetlands are important reservoirs of water, carbon and biodiversity. They are typical landscapes of lowland regions that have high potential for water retention. However, the hydrology of these wetlands in tropical regions is often studied in isolation from the processes taking place at the catchment scale. Our main objective is to study the hydrological dynamics of one of the largest tropical rainforest regions on an island using a combination of satellite remote sensing and novel observations from dedicated field campaigns. This contribution offers a comprehensive analysis of the hydrological dynamics of two neighbouring poorly gauged tropical basins; the Kapuas basin (98 700 km2) in West Kalimantan and the Mahakam basin (77 100 km2) in East Kalimantan, Indonesia. Both basins are characterised by vast areas of inland lowlands. Hereby, we put specific emphasis on key hydrological variables and indicators such as discharge and flood extent. The hydroclimatological data described herein were obtained during fieldwork campaigns carried out in the Kapuas over the period 2013–2015 and in the Mahakam over the period 2008–2010. Additionally, we used the Tropical Rainfall Measuring Mission (TRMM) rainfall estimates over the period 1998–2015 to analyse the distribution of rainfall and the influence of El-Niño – Southern Oscillation. Flood occurrence maps were obtained from the analysis of the Phase Array type L-band Synthetic Aperture Radar (PALSAR) images from 2007 to 2010. Drought events were derived from time series of simulated groundwater recharge using time series of TRMM rainfall estimates, potential evapotranspiration estimates and the threshold level approach. The Kapuas and the Mahakam lake regions are vast reservoirs of water of about 1000 and 1500 km2 that can store as much as 3 and 6.5 billion m3 of water, respectively. These storage capacity values can be doubled considering the area of flooding under vegetation cover. Discharge time series show that backwater effects are highly influential in the wetland regions, which can be partly explained by inundation dynamics shown by flood occurrence maps obtained from PALSAR images. In contrast to their nature as wetlands, both lowland areas have frequent periods with low soil moisture conditions and low groundwater recharge. The Mahakam wetland area regularly exhibits low groundwater recharge, which may lead to prolonged drought events that can last up to 13 months. It appears that the Mahakam lowland is more vulnerable to hydrological drought, leading to more frequent fire occurrences than in the Kapuas basin.


2016 ◽  
Vol 20 (3) ◽  
pp. 1177-1195 ◽  
Author(s):  
Huayang Cai ◽  
Hubert H. G. Savenije ◽  
Chenjuan Jiang ◽  
Lili Zhao ◽  
Qingshu Yang

Abstract. The mean water level in estuaries rises in the landward direction due to a combination of the density gradient, the tidal asymmetry, and the backwater effect. This phenomenon is more prominent under an increase of the fresh water discharge, which strongly intensifies both the tidal asymmetry and the backwater effect. However, the interactions between tide and river flow and their individual contributions to the rise of the mean water level along the estuary are not yet completely understood. In this study, we adopt an analytical approach to describe the tidal wave propagation under the influence of substantial fresh water discharge, where the analytical solutions are obtained by solving a set of four implicit equations for the tidal damping, the velocity amplitude, the wave celerity, and the phase lag. The analytical model is used to quantify the contributions made by tide, river, and tide–river interaction to the water level slope along the estuary, which sheds new light on the generation of backwater due to tide–river interaction. Subsequently, the method is applied to the Yangtze estuary under a wide range of river discharge conditions where the influence of both tidal amplitude and fresh water discharge on the longitudinal variation of the mean tidal water level is explored. Analytical model results show that in the tide-dominated region the mean water level is mainly controlled by the tide–river interaction, while it is primarily determined by the river flow in the river-dominated region, which is in agreement with previous studies. Interestingly, we demonstrate that the effect of the tide alone is most important in the transitional zone, where the ratio of velocity amplitude to river flow velocity approaches unity. This has to do with the fact that the contribution of tidal flow, river flow, and tide–river interaction to the residual water level slope are all proportional to the square of the velocity scale. Finally, we show that, in combination with extreme-value theory (e.g. generalized extreme-value theory), the method may be used to obtain a first-order estimation of the frequency of extreme water levels relevant for water management and flood control. By presenting these analytical relations, we provide direct insight into the interaction between tide and river flow, which will be useful for the study of other estuaries that experience substantial river discharge in a tidal region.


2021 ◽  
Author(s):  
Roberta Boscolo ◽  
Hamid Bastani ◽  
Asmerom Beraki ◽  
Nicolas Fournier ◽  
Raül Marcos-Matamoros ◽  
...  

<p><strong><em>FOCUS-Africa</em></strong> is an EU Horizon 2020 project funded to co-develop tailored climate services in the Southern African Development Community (SADC) region. The project, led by the WMO and started in September 2020, gathers 16 partners across Africa and Europe jointly committed to addressing the value of climate services for key economic sectors in Africa: agriculture and food security, water, energy, and infrastructure.</p><p>The project is piloting eight case studies (CSs) in five different countries involving a wide range of end-users. New services derived from seasonal and decadal forecasts are applied for food security and crop production in South Africa, Malawi, Mozambique, and Tanzania. High-resolution climate projections, as well as historical climate reanalyses, are used to support planning and investment decisions for: a railway infrastructure and a mix of renewable energies in Tanzania, hydropower generation assessment under climate change scenarios in Malawi, and water resources management in Mauritius.</p><p>For all the FOCUS-Africa’s case studies, socio-economic impact assessment of the delivered climate services will be carried out in collaboration with the CS leaders, service providers, and end-users, by providing ex-ante and ex-post evaluations grounded in the Global Indicator Framework for the Sustainable Development Goals. The project will align the capacity development efforts with those promoted by WMO for enhancing the capabilities of the NMHSs to deliver climate services to users and will make sure that the project's innovative processes and tools will be part of the WMO training curricula.</p><p>FOCUS-Africa's expected impacts are:</p><ul><li>Build a strong link between the climate scientific community and stakeholders in the SADC region by leveraging the advanced scientific knowledge and strong networks of the implementing team, and by establishing dedicated channels of communications, so as to target the full value chain of our users, from the start of the project</li> <li>Advance the way in which climate information is developed by characterising end-use requirements through regular engagement</li> <li>Contribute to the advancement of the scientific knowledge in the region and strengthened support for international scientific assessments through publications and reports such as those relevant for the IPCC, through the innovative science developed by FOCUS-Africa</li> <li>Demonstrate the effectiveness of the climate information by strengthening the adaptive capacity of end-users by delivering tailored, actionable, and exploitable climate services and by estimating their socio-economic benefits across the full value chain.</li> <li>Enhance policy-making for climate adaptation in the project and other countries</li> <li>Increase women’s access to climate services</li> </ul>


Sign in / Sign up

Export Citation Format

Share Document