Oligocene-Miocene tectonics of the SW Alps and western Apennines coupled orogenic belts, as recorded by their internal and external syn-orogenic basins

Author(s):  
Luca Barale ◽  
Piana Fabrizio ◽  
Bertok Carlo ◽  
d'Atri Anna ◽  
Irace Andrea ◽  
...  

<p>The Oligocene-Miocene evolution of the westernmost part of the Northern Apennines was constrained firstly by Oligocene E-W regional sinistral shearing and then by Early Miocene shortening and Middle to Late Miocene NW-SE dextral transpression affecting the southern termination of the Western Alps arc (Maritime and Ligurian Alps) and the substrate of the Tertiary Piemonte Basin (TPB), which started to be incorporated, in the same time span, in the Northern Apennines belt</p><p>In other words, the dynamics accommodating the different motion of the WNW-directed Adria and SW Alps with respect to the ENE-directed Ligurian-Corso-Sardinian block also controlled the evolution of TPB and its Ligurian substrate since at least the Aquitanian, when a regional conterclockwise rotation began and a deep reshaping of the basin occurred, due to predominant NE-SW shortening concomitant with the Northern Apennines thrust fronts propagation (Burdigalian). On the other side, the infilling of the SW Alps foreland basin was partially controlled also by the resedimentation of non-metamorphic Cretaceous-Paleocene Ligurian units previously deposited along the Briançonnais-Dauphinois continental margin. The subsequent Late Burdigalian to Serravallian extension in the internal side of the SW Alps allowed the creation of accomodation space and the deposition of relevant thickness of sediments in the TPB, during the coeval progressive uplifting of Alpine crystalline and metamorphic units (e.g. the Argentera Massif and Dora-Maira Unit). This Alpine process constrained the shape and evolution of the TPB syn-orogenic sub-basins and their subsequent tectonic paths within the NW Apennines belt, while it was being built. The steps of this Alps-Apennines evolution have been clearly recorded by a set of regional scale, Oligocene to Pleistocene unconformities that can be continuously traced at surface in the southern part of the Piemonte region and in the subsurface of the western Po plain.</p><p>We thus remark that the evolution of the westernmost part of the Apennines can be studied largely referring to the Alpine geodynamics, since, although the Alps and the Apennines are two distinct geomorphologic and geophysical entities at the scale of the Western Mediterranean area, they share common synorogenic basins and consistent kinematic evolution in their junction zone of NW Italy.</p>

2021 ◽  
Author(s):  
Fabrizio Piana ◽  
Anna d'Atri ◽  
Andrea Irace

<p>The Alps and the westernmost part of Apennines physically join in NW Italy (Piemonte), where the Apennine thrusts interfered, since Late Oligocene, with both the inner boundary faults of the uplifting Alps axial belt and the outer fronts of the Alpine antithetic retrobelt (the Southern Alps). As the two orogenic belts had been intergrowing since the late Oligocene, coeval syn-orogenic basins developed on both, either as separate depocenters or, more frequently, to form a continuous sedimentary domain, strongly controlled by the tectonic evolution of the Alps-Apennines orogenic system.  These syn-orogenic basins both recorded the main stages of the Alps (neoAlpine events) and Apennines tectonic evolution, whose evidence (mostly represented by regional-scale unconformities) can be correlated within each basin and across them. Correlations (in terms of sharing common geologic events) can be found also with the middle Eocene to lower Oligocene basal part of the Alpine foreland basin succession, which extended continuously on the external side of the Western Alps. This contribution will briefly discuss this complex matter in an integrated Alpine-Apennines perspective and in the frame of the post-Eocene evolution of the Western Mediterranean area.</p>


2020 ◽  
Author(s):  
Eline Le Breton

<p>The Western Mediterranean-Alpine belt is remarkable for its tectonic complexity, i.e. strong arcuation of plate boundaries, fast trench retreat, upper-plate extension and switch of subduction/collision polarity around the Adriatic plate (Adria). The kinematic evolution of the Western Mediterranean area is enigmatic due to the intermittently motion of small continental plates (Adria, Iberia and Sardinia-Corsica) that are caught between two major plates (Africa and Europe), converging since Cretaceous time. Reconstructing the past motion of these micro-plates is challenging due to the strong deformation of their boundaries but is key to understand the geodynamic evolution of the whole area.</p><p>The Neogene tectonic evolution is well constrained using magnetic anomalies and transform zones in the Atlantic Ocean for the motion of Europe, Iberia and Africa, and by reconstructing the amount of convergence along fold-and-thrust belts (Apennines, Alps, Dinarides, Provence) and coeval divergence along extensional basins (Liguro-Provencal and Tyrrhenian basins, Sicily Channel Rift Zone) for the motion of Adria and Sardinia-Corsica. Those reconstructions show that Adria had a slight independent motion from Africa and rotated counter-clockwise of about 5º relative to Europe since 20 Ma. However, uncertainties increase and debates arise as one goes back in time. The main debates concern the past motion of Iberia and where its motion relative to Europe is being accommodated in Mesozoic time. Different kinematic scenarios have been proposed depending on the interpretation of paleomagnetic dataset of Iberia, magnetic anomalies in the North Atlantic, and geological-geophysical record of deformation in the Pyrenees and between Iberia and Sardinia-Corsica. Those scenarios have different implications for the tectonic evolution of the Apennines, especially for the Permian-Triassic paleo-tectonic setting of Sardinia, Calabria and Adria, and for the extent and timing of closure of the Liguro-Piemont Ocean. It is important to discuss those implications to better understand subduction processes in the Apennines and their driving forces.</p>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Aurélie Salavert ◽  
Antoine Zazzo ◽  
Lucie Martin ◽  
Ferran Antolín ◽  
Caroline Gauthier ◽  
...  

AbstractThis paper aims to define the first chrono-cultural framework on the domestication and early diffusion of the opium poppy using small-sized botanical remains from archaeological sites, opening the way to directly date minute short-lived botanical samples. We produced the initial set of radiocarbon dates directly from the opium poppy remains of eleven Neolithic sites (5900–3500 cal BCE) in the central and western Mediterranean, northwestern temperate Europe, and the western Alps. When possible, we also dated the macrobotanical remains originating from the same sediment sample. In total, 22 samples were taken into account, including 12 dates directly obtained from opium poppy remains. The radiocarbon chronology ranges from 5622 to 4050 cal BCE. The results show that opium poppy is present from at least the middle of the sixth millennium in the Mediterranean, where it possibly grew naturally and was cultivated by pioneer Neolithic communities. Its dispersal outside of its native area was early, being found west of the Rhine in 5300–5200 cal BCE. It was introduced to the western Alps around 5000–4800 cal BCE, becoming widespread from the second half of the fifth millennium. This research evidences different rhythms in the introduction of opium poppy in western Europe.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 741
Author(s):  
Javier Plaza ◽  
M. Remedios Morales-Corts ◽  
Rodrigo Pérez-Sánchez ◽  
Isabel Revilla ◽  
Ana M. Vivar-Quintana

Nowadays, there is a growing demand for high-quality vegetal protein food products, such as pulses and lentils in particular. However, there is no scientific evidence on the nutritional and morphometric characterization of the main lentil cultivars in the Western Mediterranean area. For this reason, the aim of this work is to carry out a morphometric and nutritional characterization of the main Spanish lentil cultivars. Nutrient content assessment was performed on dry matter. The results showed that all studied cultivars are large and heavy lentils, except for the cultivar “Pardina”. They have high protein levels, ranging from 21% to 25%, which is higher than those found in any other pulse, as well as a high carbohydrate content, greater than 59% in all cases. Fiber content was higher than expected in “Armuña” and “Rubia Castellana” cultivars, ranging from 6% to 6.6%, and exceptionally high in the case of the cultivar “Pardina”, which reached 7.8%. Conversely, very low values were found for fat content, varying between 0.5% and 0.9%. Ca, Fe and Mg levels were remarkably higher (from 550 ppm to 851 ppm, from 98 ppm to 139 ppm and from 790 ppm to 989 ppm, respectively) than those found for other lentil cultivars, especially the high Mg content in the cultivars “Jaspeada” and “Microjaspeada”, both above 955 ppm. Clear differentiation was found between the cultivars “Rubia Castellana”, “Pardina” and those included in the Protected Geographical Indication (PGI) “Lenteja de la Armuña”. Overall, lentil cultivars included in the PGI “Lenteja de la Armuña” showed better morphometric and nutritional characteristics than cultivars “Pardina” or “Rubia Castellana”.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 678
Author(s):  
Kamel Atrouz ◽  
Ratiba Bousba ◽  
Francesco Paolo Marra ◽  
Annalisa Marchese ◽  
Francesca Luisa Conforti ◽  
...  

Olive tree with its main final product, olive oil, is an important element of Mediterranean history, considered the emblematic fruit of a civilization. Despite its wide diffusion and economic and cultural importance, its evolutionary and phylogenetic history is still difficult to clarify. As part of the Mediterranean basin, Algeria was indicated as a secondary diversification center. However, genetic characterization studies from Maghreb area, are currently underrepresented. In this context, we characterized 119 endemic Algerian accessions by using 12 microsatellite markers with the main goal to evaluate the genetic diversity and population structure. In order to provide new insights about the history of olive diversification events in the Central-Western Mediterranean basin, we included and analyzed a sample of 103 Italian accessions from Sicily and, a set of molecular profiles of cultivars from the Central-Western Mediterranean area. The phylogenetic investigation let us to evaluate genetic relationships among Central-Mediterranean basin olive germplasm, highlight new synonymy cases to support the importance of vegetative propagation in the cultivated olive diffusion and consolidate the hypothesis of more recent admixture events occurrence. This work provided new information about Algerian germplasm biodiversity and contributed to clarify olive diversification process.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 94
Author(s):  
Esther Borrás ◽  
Luis Antonio Tortajada-Genaro ◽  
Francisco Sanz ◽  
Amalia Muñoz

The chemical characterization of aerosols, especially fine organic fraction, is a relevant atmospheric challenge because their composition highly depends on localization. Herein, we studied the concentration of multi-oxygenated organic compounds in the western Mediterranean area, focusing on sources and the effect of air patterns. The organic aerosol fraction ranged 3–22% of the total organic mass in particulate matter (PM)2.5. Seventy multi-oxygenated organic pollutants were identified by gas chromatography–mass spectrometry, including n-alkanones, n-alcohols, anhydrosugars, monocarboxylic acids, dicarboxylic acids, and keto-derivatives. The highest concentrations were found for carboxylic acids, such as linoleic acid, tetradecanoic acid and, palmitic acid. Biomarkers for vegetation sources, such as levoglucosan and some fatty acids were detected at most locations. In addition, carboxylic acids from anthropogenic sources—mainly traffic and cooking—have been identified. The results indicate that the organic PM fraction in this region is formed mainly from biogenic pollutants, emitted directly by vegetation, and from the degradation products of anthropogenic and biogenic volatile organic pollutants. Moreover, the chemical profile suggested that this area is interesting for aerosol studies because several processes such as local costal breezes, industrial emissions, and desert intrusions affect fine PM composition.


Author(s):  
Mourad Guettaf ◽  
Gustavo A. San Martin ◽  
Patrice Francour

The spawning of Paracentrotus lividus has been determined on the basis of the annual gonad index cycle at three sites in the Algiers area presenting low, intermediate and strong hydrodynamism. Three biotopes (Posidonia oceanica beds, rocky substrate with photophilous algae and overgrazed rocky substrate) and two depths (1–3 m and 6–10 m) were considered at these sites, the sex-ratio was always strongly in favour of females (2:1 to 3:1). In all sites but one, there were marked differences in the gonad index and the spawning period between sites; the gonad index reached its maximum value at the site with the weakest hydrodynamism, and the minimum value at the site with the strongest hydrodynamism. Spawning took place in April–May and August–September at the site with the weakest hydrodynamism, in April–June and October–December at the site with intermediate hydrodynamism and only in winter at the site with maximum hydrodynamism. The coexistence, on regional scale, of these reproductive cycles might enable Paracentrotus lividus to compensate the mortality during planktonic larval phase by the fact that spawning of this sea urchin occurred in all seasons.


2021 ◽  
Author(s):  
Amir Kalifi ◽  
Philippe-Hervé Leloup ◽  
Philippe Sorrel ◽  
Albert Galy ◽  
François Demory ◽  
...  

<p>The fact that the western Alps Miocene foreland basin succession is poorly dated impacts directly our understanding of the deformation kinematics of that part of the external part of the Alpine belt (France). Here we propose a multidisciplinary approach aiming at building a robust tectono-stratigraphic framework of the Miocene deposits at the basin scale (northern subalpine massifs, southern Jura, Royans, Bas-Dauphiné and La Bresse basins). Sr isotopes stratigraphy combined with magnetostratigraphy and biostratigraphy enable sequence stratigraphy subdivisions S1 to S8 between the Upper Aquitanian (-21 Ma) and the Tortonian (-9 Ma) dated with a precision <0.5 Ma. These results highlight four different palaeogeographical domains during the Miocene: (i) the oriental domain with depositional sequences S1a to S3 (~21.3 to 15Ma), (ii) the median domain, in which sequences S2, S3, S4 and S5 occurred (~17.8 to 14Ma), (iii) the occidental domain with sequences S2 to S8 (~17.8 to ~9.5Ma); and (iv) the Bressan domain, in which sequences S6 to S8 are found (~ 11.5 to ~9.5Ma).</p><p>This revised chronostratigraphy was complemented with a structural and tectono-sedimentary study based on new fieldwork data and a reappraisal of regional seismic profiles, allowing to highlight five major faults zones (FZ). It appears that the oriental, median and occidental paleogeographical domains are delineated by FZ1, FZ2 and FZ3, therefore suggesting a strong interplay between tectonics and sedimentation. Evidences of syntectonic deposits and a westward migration of the depocenters impart the following deformation chronology : a Oligocene compressive phase (P1) corresponding to thrusting above FZ1 rooted east (above) Belledonne, which generated reliefs that limited the early Miocene transgression to the east; an Early- to Middle Miocene W-WNW/E-ESE-directed compressive phase (P2) involving the Belledonne massif basal thrust, which between 18.05 +/- 0.15 Ma and 12Ma successively activated the Salève thrust fault, and the FZ2 to FZ5 from east to west. P2 deeply impacted the Miocene palaeogeographical evolution by a rapid westward migration of depocenters in response to the exhumation of piggy-back basins above the growing fault zones; a last Tortonian phase (P3), less well constrained, apparently implied a significant uplift in the subalpine massifs, combined with the activation of the frontal Jura thrust.</p>


Sign in / Sign up

Export Citation Format

Share Document