Characteristics of shale oil reservoirs in Qianjiang Formation, Qiangjiang Depression, Jianghan Basin, China

Author(s):  
Jing Luo ◽  
Furong Wang

<p>The Jianghan Basin is a typical eastern fault depression salt lake basin in China, in which the Paleogene strata of the Qianjiang Sag are rich in shale oil resources. As a salt lake sedimentary basin, the developed Qianjiang Formation is a set of inter-salt oil-bearing strata, in which the salt rock strata are especially developed. There are many salt rhythms in the study area and a salt rhythm consists of a argillaceous dolomite layer between a salt rock formation and a salt rock formation. This study focuses on the 10th rhythm of the Qian 3<sup>4</sup> section of Qianjiang Depression (Eq3<sup>4</sup>10). The samples were investigated by organic geochemical analysis and X-ray diffraction, and the pore structure characteristics of the reservoir were studied by argon ion polishing scanning electron microscope and low temperature nitrogen adsorption test. The research indicates that the average TOC of Eq3<sup>4</sup>10 in Qianjiang Depression is 2.11% and the main distribution is 1%~3%; the type of organic matter is mainly Type II<sub>2</sub> and Type II<sub>1</sub>; the overall maturity of organic matter is low maturity stage(Tmax is 412~441℃with an average of 423℃). The XRD data indicates that the mineral composition of the Qianjiang Formation shale oil reservoir is complex and have strong heterogeneity(quartz content in 2.3%~18.6% with an average of 9.5%, calcite content in 6.9~43.8% with an average of 12.8%, dolomite content in 2.5%~ 61.2% with an average of 27.2%, clay mineral content in 1.0%~45.2% with an average of 20.5%, glauberite content from 7.1% to 92.7% with an average of 22.9%). The pore types of shale oil reservoirs in Qianjiang Sag are complex and diverse and mostly are intergranular pores, which are mainly developed between detrital minerals or between detrital minerals and carbonate minerals. In carbonate mineral particles and quartz particles, some intragranular pores are visible, including calcite dissolution pores, internal pores of calcite and clay minerals, and internal pores of pyrite particles. And organic pores are rare in reservoirs due to the low maturity(Ro ranges between 0.5% and 0.7%). Nitrogen adsorption experiments showed that the pore size distribution of Eq3<sup>4</sup>10 samples was dominated by mesopores and macropores. And the pore volume of the Eq3<sup>4</sup>10 sample was most affected by the macropore pore volume, averaging 66.22%, followed by the mesopore pore volume with an average of 31.45%. To study and understand the characteristics of shale oil reservoir in Qianjiang Depression is conducive to mastering the regularity of shale oil enrichment and provides a basis for the exploration and development of shale oil.</p>

Author(s):  
Lanlan Yao ◽  
Zhengming Yang ◽  
Haibo Li ◽  
Bo Cai ◽  
Chunming He ◽  
...  

AbstractImbibition is one of the important methods of oil recovery in shale oil reservoirs. At present, more in-depth studies have been carried out on the fracture system and matrix system, and there are few studies on the effect of energy enhancement on imbibition in shale oil reservoirs. Therefore, based on the study of pressurized imbibition and spontaneous imbibition of shale oil reservoirs in Qianjiang Sag, Jianghan Basin, nuclear magnetic resonance technology was used to quantitatively characterize the production degree of shale and pore recovery contribution under different imbibition modes, and analyze the imbibition mechanism of shale oil reservoirs under the condition of energy enhancement. The experimental results showed that with the increase in shale permeability, the recovery ratio of pressurized imbibition also increased. The rate of pressurized imbibition was higher than spontaneous imbibition, and pressurized imbibition can increase the recovery ratio of fractured shale. Spontaneous imbibition can improve the ultimate recovery ratio of matrix shale. Pressurized imbibition can increase the recovery contribution of macroporous and mesoporous.


Author(s):  
Debin Xia ◽  
Zhengming Yang ◽  
Tiening Gao ◽  
Haibo Li ◽  
Wei Lin

Abstract Porosity is the most common form of reservoirs, and its size, shape, and connectivity directly affect the capacity of oil and gas storage and production. To study the micro–nano-pore structure characteristics of shale oil reservoirs and quantitatively characterize its heterogeneity, this work uses high-precision high-pressure mercury intrusion (HPMI) experimental techniques to study the micro–nano-pore structure characteristics of shale oil, and based on the experimental data, fractal theory is used to quantitatively characterize its heterogeneity. The results of the study show that the micro–nano-pores in the shale oil reservoir are concentrated and continuous, and the pore radius is mainly distributed among the range of 30–500 nm, nanoscale pores are an important part of the pores of the shale oil reservoir. The fractal dimension of the shale oil reservoir is larger than the fractal dimension of typical tight oil reservoirs, indicating that the heterogeneity of shale oil reservoir is stronger. The research results have some theoretical and practical significance for the production of inter-salt shale oil reservoirs.


2021 ◽  
pp. 014459872110225
Author(s):  
Rui Shen ◽  
Wei Xiong ◽  
Xiaoming Lang ◽  
Lei Wang ◽  
Hekun Guo ◽  
...  

The rapid and cost-effective quantitative characterization of broad-sense shale oil reservoirs is highly challenging due to the complex lithology and strong heterogeneity of the strata. In this paper, the pore structures and surface roughness of samples of various lithologies from a shale oil reservoir were studied using atomic force microscopy (AFM) and the open-source Gwyddion analytical software. The surface morphology was reconstructed both two-dimensionally and three-dimensionally using the AFM data for the mudstone, siltstone, and dolarenite in a broad-sense shale oil reservoir. The surface roughness was evaluated with respect to parameters such as the arithmetic average roughness, root mean square roughness, surface skewness, and kurtosis coefficient. The pores of various scales were quantitatively identified using the watershed algorithm. The samples were also evaluated using focused ion beam scanning electron microscopy for comparison, and the derived pore scales are consistent with those obtained from the AFM analysis. In conclusion, the utilization of AFM and open-source software provides a new easy-to-operate method, which can be widely applied to characterize the surface roughness and pore structures of unconventional oil and gas reservoirs.


2015 ◽  
Vol 89 (s1) ◽  
pp. 37-38
Author(s):  
Ying HU ◽  
Shuangfang LU ◽  
Wenhao LI ◽  
Pengfei ZHANG ◽  
Qian LI ◽  
...  

2020 ◽  
Vol 8 (4) ◽  
pp. T675-T686
Author(s):  
Tong Zhou ◽  
Jianzheng Su ◽  
Shichao Fan ◽  
Zhaofeng Li ◽  
Xiaoxue Liu ◽  
...  

High-salinity shale is a unique and promising shale-oil reservoir in continental basins. We have collected representative samples from different lithologies from wells in the Qianjiang Depression to test the pore structure and basic character from prospective high-salinity oil-bearing shales. We conducted field emission scanning electron microscopy and X-ray diffraction analyses to study the high-salinity shale pore morphology and composition, respectively. We used mercury injection capillary pressure to understand the high-salinity shale macropore distribution, and we used low-pressure nitrogen (N2) adsorption to study the mesopore distribution. The results show that the high-salinity shale-oil reservoir mainly is composed of carbonate (dolomite and calcite), clay, and saline minerals (anhydrite, glauberite, and halite). Many intergranular pores were developed in the high-salinity shale. The mesopores and macropores both were developed well in argillaceous dolomite. The average pore volume of macropores is 0.0588 ml/g, which accounts for approximately 59% of the total pore volume. Therefore, in the high-salinity shale-oil reservoirs that we tested, macropores were more important than other pores. The symbiosis of dolomite and calcite improved the porosity of the high-salinity shale-oil reservoir, and the salt minerals increased the pore complexity.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xin Nie ◽  
Jing Lu ◽  
Jingyuan Chi ◽  
Peilin Wang ◽  
Chaomo Zhang

Organic-rich shales in between salt rock layers distribute widely in Qianjiang Sag, Jianghan Basin, central China. Due to the complexity of matrix mineral components and their distribution and tight pore structure, Archie’s law cannot be used directly to calculate oil saturation in those shale oil reservoirs. A new oil content model for shale oil reservoirs was introduced. By analyzing the logging and core experimental data from Qianjiang Sag, Jianghan Oilfield, we built the relationship between kerogen and the different well logging porosities including nuclear magnetic resonance (NMR) porosity, neutron porosity, and density porosity. And we used the dual- V sh method to calculate the total organic carbon (TOC). After calculating the volume fraction of the solid organic matters and separating it from the TOC, we acquired the hydrocarbon fluid content in the formations. The calculated oil content results are coherent with the core experimental data, which indicates the efficiency of this model. This model is simple and can be quickly applied. However, this method also shows its weakness in calculation precision when the TOC is not calculated precisely or the quality of the porosity logs is low.


2021 ◽  
pp. 014459872110427
Author(s):  
Haiguang Wu ◽  
Junjun Zhou ◽  
Wenxuan Hu ◽  
Funing Sun ◽  
Xun Kang ◽  
...  

Authigenic albites occur widely in clastic reservoirs with important implications for diagenesis and reservoir formation. The middle Permian Lucaogou Formation in the Jimusaer Sag (Junggar Basin, NW China), where major exploration breakthroughs in shale oil have been achieved, reveals a new phenomenon that authigenic albites are abundant in unique mixed carbonate–volcanic–clastic sequences. This has not been reported in the literatures. To fill the knowledge gap, the origin of these authigenic albites and their relationship with dissolution pores (i.e. diagenesis implications) were investigated. Results show that two types (I and II) of authigenic albite were identified within the shale oil reservoirs. Euhedral Type I authigenic albites with 3–10 μm only occur in dolarenite intraclasts and are symbiotic with amorphous dolomite minerals with a pure chemical composition of >99% albite-end-member content. Larger Type II authigenic albites with 10–50 μm are widely distributed in reservoirs, primarily in dissolution pores, and coexist with authigenic dolomite minerals or dolomite overgrowths. Their chemical composition is less pure with anorthite-end-member contents that range from undetectable to 9.77%, with an average of 1.34%. A symbiotic relationship, pure chemical composition, size, and euhedral morphology indicate that Type I authigenic albites precipitated during syngenetic hydrothermal action. However, the morphology of dissolution pores, residual symbiotic “orthoclase”, impure chemical composition and carbon–oxygen isotope indicate that Type II were the products of the dissolution and reprecipitation of “perthite” crystal pyroclasts influenced by acid organic fluids in latter diagenesis. The differential dissolution of “orthoclase” and “albite” components in “perthite” crystal pyroclasts formed enormous intergranular secondary pores in the presence of dolomite minerals in the shale oil reservoirs.


2017 ◽  
Author(s):  
T. Chen ◽  
R. Salas-Porras ◽  
D. Mao ◽  
V. Jain ◽  
M. A. Thomas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document