Pore structure and controlling factors of dolomite-bearing high-salinity shale reservoir in Qianjiang Formation, Jianghan Basin, China

2020 ◽  
Vol 8 (4) ◽  
pp. T675-T686
Author(s):  
Tong Zhou ◽  
Jianzheng Su ◽  
Shichao Fan ◽  
Zhaofeng Li ◽  
Xiaoxue Liu ◽  
...  

High-salinity shale is a unique and promising shale-oil reservoir in continental basins. We have collected representative samples from different lithologies from wells in the Qianjiang Depression to test the pore structure and basic character from prospective high-salinity oil-bearing shales. We conducted field emission scanning electron microscopy and X-ray diffraction analyses to study the high-salinity shale pore morphology and composition, respectively. We used mercury injection capillary pressure to understand the high-salinity shale macropore distribution, and we used low-pressure nitrogen (N2) adsorption to study the mesopore distribution. The results show that the high-salinity shale-oil reservoir mainly is composed of carbonate (dolomite and calcite), clay, and saline minerals (anhydrite, glauberite, and halite). Many intergranular pores were developed in the high-salinity shale. The mesopores and macropores both were developed well in argillaceous dolomite. The average pore volume of macropores is 0.0588 ml/g, which accounts for approximately 59% of the total pore volume. Therefore, in the high-salinity shale-oil reservoirs that we tested, macropores were more important than other pores. The symbiosis of dolomite and calcite improved the porosity of the high-salinity shale-oil reservoir, and the salt minerals increased the pore complexity.

Author(s):  
Debin Xia ◽  
Zhengming Yang ◽  
Tiening Gao ◽  
Haibo Li ◽  
Wei Lin

Abstract Porosity is the most common form of reservoirs, and its size, shape, and connectivity directly affect the capacity of oil and gas storage and production. To study the micro–nano-pore structure characteristics of shale oil reservoirs and quantitatively characterize its heterogeneity, this work uses high-precision high-pressure mercury intrusion (HPMI) experimental techniques to study the micro–nano-pore structure characteristics of shale oil, and based on the experimental data, fractal theory is used to quantitatively characterize its heterogeneity. The results of the study show that the micro–nano-pores in the shale oil reservoir are concentrated and continuous, and the pore radius is mainly distributed among the range of 30–500 nm, nanoscale pores are an important part of the pores of the shale oil reservoir. The fractal dimension of the shale oil reservoir is larger than the fractal dimension of typical tight oil reservoirs, indicating that the heterogeneity of shale oil reservoir is stronger. The research results have some theoretical and practical significance for the production of inter-salt shale oil reservoirs.


2020 ◽  
Author(s):  
Jing Luo ◽  
Furong Wang

<p>The Jianghan Basin is a typical eastern fault depression salt lake basin in China, in which the Paleogene strata of the Qianjiang Sag are rich in shale oil resources. As a salt lake sedimentary basin, the developed Qianjiang Formation is a set of inter-salt oil-bearing strata, in which the salt rock strata are especially developed. There are many salt rhythms in the study area and a salt rhythm consists of a argillaceous dolomite layer between a salt rock formation and a salt rock formation. This study focuses on the 10th rhythm of the Qian 3<sup>4</sup> section of Qianjiang Depression (Eq3<sup>4</sup>10). The samples were investigated by organic geochemical analysis and X-ray diffraction, and the pore structure characteristics of the reservoir were studied by argon ion polishing scanning electron microscope and low temperature nitrogen adsorption test. The research indicates that the average TOC of Eq3<sup>4</sup>10 in Qianjiang Depression is 2.11% and the main distribution is 1%~3%; the type of organic matter is mainly Type II<sub>2</sub> and Type II<sub>1</sub>; the overall maturity of organic matter is low maturity stage(Tmax is 412~441℃with an average of 423℃). The XRD data indicates that the mineral composition of the Qianjiang Formation shale oil reservoir is complex and have strong heterogeneity(quartz content in 2.3%~18.6% with an average of 9.5%, calcite content in 6.9~43.8% with an average of 12.8%, dolomite content in 2.5%~ 61.2% with an average of 27.2%, clay mineral content in 1.0%~45.2% with an average of 20.5%, glauberite content from 7.1% to 92.7% with an average of 22.9%). The pore types of shale oil reservoirs in Qianjiang Sag are complex and diverse and mostly are intergranular pores, which are mainly developed between detrital minerals or between detrital minerals and carbonate minerals. In carbonate mineral particles and quartz particles, some intragranular pores are visible, including calcite dissolution pores, internal pores of calcite and clay minerals, and internal pores of pyrite particles. And organic pores are rare in reservoirs due to the low maturity(Ro ranges between 0.5% and 0.7%). Nitrogen adsorption experiments showed that the pore size distribution of Eq3<sup>4</sup>10 samples was dominated by mesopores and macropores. And the pore volume of the Eq3<sup>4</sup>10 sample was most affected by the macropore pore volume, averaging 66.22%, followed by the mesopore pore volume with an average of 31.45%. To study and understand the characteristics of shale oil reservoir in Qianjiang Depression is conducive to mastering the regularity of shale oil enrichment and provides a basis for the exploration and development of shale oil.</p>


2014 ◽  
Vol 602-603 ◽  
pp. 279-284
Author(s):  
Li Qun Duan ◽  
Chen Chen Zhang ◽  
Qing Song Ma ◽  
Zhao Hui Chen

Nanoporous carbonaceous materials derived from polysiloxane were first prepared by pyrolysis at 1300°C followed with hydrofluoric acid (HF) etching treatment. Their thermal stability of pore structure in inert condition was investigated in this paper by nitrogen adsorption technique in detail. The specific surface area (SSA) and pore volume (total pore volume, micropore volume, mesopore volume) decreased continually in the heat-treatment temperature range of 1000~1400°C. The average pore size almost kept the same with the raw sample. However, when the temperature exceeded 1400°C, the micropore interconnection began transforming to mesopore structure, which led to the decline of SSA and the increase of average pore size. Furthermore, the pore size distributions (PSDs) curves showed that heat-treatment had an advantage on the transition process of pore structure from disorder to regularity to some extent when heat-treated in the range 1000~1400°C for the most possible reason of relief of residue strain in the carbonaceous materials.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Shuwen Zhang ◽  
Xuefu Xian ◽  
Junping Zhou ◽  
Guojun Liu ◽  
Yaowen Guo ◽  
...  

In order to study the effects of particle size on the determination of pore structure in shale, the outcrop of Ordovician Wufeng (WF) and Silurian Longmaxi shale (LMX) samples from Sichuan basin were chosen and crushed into various particle sizes. Then, pore structure was analyzed by using low-pressure gas adsorption (LPGA) tests. The results show that the pore of shales is mainly composed of slit-type pores and open pores. The specific surface areas of shale are mainly contributed by micropores, while the largest proportion of the total pore volume in shale is contributed by mesopores. With the decreasing of particle size, the specific surface area of both samples is decreased, while average pore diameter and the total pore volume are increased gradually. The influences of particle size on the pore structure parameters are more significant for micropore and macropore, as the particle sizes decrease from 2.36 mm to 0.075 mm, the volume of micropores in Longmaxi shale increases from 0.283 cm3/100 g to 0.501 cm3/100 g with an increment almost 40%, while the volume of macropores decreases from 0.732 cm3/100 g to 0.260 cm3/100 g with a decrement about 50%. This study identified the fractal dimensions at relative pressures of 0–0.50 and 0.50–0.995 as D1 and D2, respectively. D1 increases with the decrease of particle size of shale, while D2 shows an opposite tendency in both shale samples.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2027 ◽  
Author(s):  
Xiaomeng Cao ◽  
Yuan Gao ◽  
Jingwei Cui ◽  
Shuangbiao Han ◽  
Lei Kang ◽  
...  

Shale oil is hosted in nanopores of organic-rich shales, so pore characteristics are significant for shale oil accumulation. Here we analyzed pore characteristics of 39 lacustrine shale samples of the Late Cretaceous Qingshankou Formation (K2qn) in the Songliao Basin, which is one of the main shale oil resource basins in China, using field emission-scanning electron microscopy (FE-SEM), and low-pressure nitrogen adsorption. We accomplished fractal analysis, correlation analysis using correlation matrix and multidimensional scaling (MDS), and prediction of fractal dimensions, which is the first time to predict pore fractal dimensions of shales. Interparticle pores are highly developed in K2qn. These shales have mesoporous nature and slit-shaped pores. Compared with the second and third members (K2qn2,3), the first member of the Qingshankou Formation (K2qn1) has a larger average pore diameter, much smaller surface area, fewer micropores, simpler pore structure and surface indicated by smaller fractal dimensions. In terms of pore characteristics, K2qn1 is better than K2qn2,3 as a shale oil reservoir. When compared with marine Bakken Formation shales, lacustrine shales of the Qingshankou Formation have similar complexity of pore structure, but much rougher pore surface. This research can lead to an improved understanding of the pore system of lacustrine shales.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Chenlong Ding ◽  
Jinxian He ◽  
Hongchen Wu ◽  
Xiaoli Zhang

Ordos Basin is an important continental shale gas exploration site in China. The micropore structure of the shale reservoir is of great importance for shale gas evaluation. The Taiyuan Formation of the lower Permian is the main exploration interval for this area. To examine the nanometer pore structures in the Taiyuan Formation shale reservoirs in the Lin-Xing area, Northern Shaanxi, the microscopic pore structure characteristics were analyzed via nitrogen adsorption experiments. The pore structure parameters, such as specific surface area, pore volume, and aperture distribution, of shale were calculated; the significance of the pore structure for shale gas storage was analyzed; and the main controlling factors of pore development were assessed. The results indicated the surface area and hole volume of the shale sample to be 0.141–2.188 m2/g and 0.001398–0.008718 cm3/g, respectively. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, mesopores and macropores were dominant in the pore structure, with the presence of a certain number of micropores. The adsorption curves were similar to the standard IV (a)-type isotherm line, and the hysteresis loop type was mainly similar to H3 and H4 types, indicating that most pores are dominated by open type pores, such as parallel plate-shaped pores and wedge-shaped slit pores. The micropores and mesopores provide the vast majority of the specific surface area, functioning as the main area for the adsorption of gas in the shale. The mesopores and macropores provide the vast majority of the pore volume, functioning as the main storage areas for the gas in the shale. Total organic carbon had no notable linear correlation with the total pore volume and the specific surface area. Vitrinite reflectance (Ro) had no notable correlation with the specific surface area, but did have a low “U” curve correlation with the total pore volume. There was no relationship between the quartz content and specific surface area and total pore volume. In addition, there was no notable correlation between the clay mineral content and total specific surface area and total pore volume.


2018 ◽  
Vol 8 (11) ◽  
pp. 2302 ◽  
Author(s):  
Abdelfattah Amari ◽  
Hatem Gannouni ◽  
Mohammad Khan ◽  
Mohammed Almesfer ◽  
Abubakr Elkhaleefa ◽  
...  

In this study, natural clay minerals with green appearance were treated with sulfuric acid. Mass percentage of acid (wt%), temperature (T), contact time (t) and liquid-to-solid mass ratio (R) are used as the prevailing factors that determine the extent of acid-activation. The values of these factors range from 15–50%, 60–90 °C, 1.5–6 h and 4–7, respectively. The study has focused on the structural changes as well as textural characteristics of the clay. Three activated clay samples were prepared under different treatment conditions. The samples were characterized using X-ray powder diffraction (XRD), fourier transform infrared (FTIR), scanning electron microscope (SEM), chemical analysis and N2 adsorption techniques. Characterization of the treated clay minerals exhibited significant structural changes to a greater extent of acid-activation, from being partially crystalline to being amorphous silica. The surface area and total pore volume of clay increased proportionally with the level of acid treatment. The average pore diameter behaved differently. During the strong acid treatment, a large increase in pore volume and the enlargement of the pore size distribution were observed. This suggests that considerable structural changes and partial destruction may have occurred in this condition. The removal of methylene blue, used as cationic dye, from aqueous solution by the batch adsorption technique on three prepared acid-activated clay samples was studied. The Langmuir model was found to agree well with the experimental data.


2012 ◽  
Vol 174-177 ◽  
pp. 1010-1014 ◽  
Author(s):  
Hong Bin Liu ◽  
Yang Ju ◽  
Kai Pei Tian ◽  
Jin Hui Liu ◽  
Li Wang ◽  
...  

The pore structure characteristics of reactive powder concrete (RPC) were investigated by means of the mercury injection method at seven temperature levels, namely, 20°C, 100°C, 150°C, 200°C, 250°C, 300°C, 350°C, respectively. The characteristic parameters such as porosity, pore volume, average pore size and threshold aperture varied with temperatures were analyzed. The results indicate that the porosity, pore volume, threshold aperture and other characteristic parameters of RPC increased with the temperature increasing.


Sign in / Sign up

Export Citation Format

Share Document