Separating the effects of revegetation and sediment-trapping dams construction on runoff decrease in a semi-arid watershed of the Loess Plateau

Author(s):  
Bingjun Lu ◽  
Huimin Lei ◽  
Dawen Yang ◽  
Xudong Fu

<p>Runoff decrease as was triggered or exacerbated by human activities over the past decades on the Loess Plateau has grown to be a hot spot increasingly drawing nationwide concerns; distinguishing human-induced runoff-altering factors from one another is of great significance to decision-making on maintaining regional water, ecological and economic security. Sediment-trapping dams (STDs) construction and revegetation are the two major soil conservation practices regarded to have also caused runoff reduction, whose hydrologic effects on the basin scale have not been separated quantitatively. Our study, choosing the Huangfuchuan River Basin as the study area and based on analyses of its hydrologic, climatic and underlying condition changes, proposed a physically-based attribution framework which is able to account for the hydrological effects of STDs, revegetation, land use change and climate change simultaneously, and attributed runoff decrease of the basin among factors including climate change, STDs construction, revegetation and land use cover change. The model-based attribution results indicate that STDs construction caused a 45% (48%) runoff reduction from 1976-1988 to 1989-2000 (2001-2014) and revegetation was responsible for a 30% runoff decrease from 1976-1988 to 2001-2014, with daily simulation implying that the hydrologic effect of revegetation to affect flow magnitudes more consistently than that of STDs. Our study demonstrates that STDs construction is the prime contributor to runoff decrease in the study area and suggests that STDs should be taken into account in similar studies on the Loess Plateau in the future.</p>

2019 ◽  
Vol 11 (5) ◽  
pp. 1443 ◽  
Author(s):  
Rui Yan ◽  
Yanpeng Cai ◽  
Chunhui Li ◽  
Xuan Wang ◽  
Qiang Liu

This study researched the individual and combined impacts of future LULC and climate changes on water balance in the upper reaches of the Beiluo River basin on the Loess Plateau of China, using the scenarios of RCP4.5 and 8.5 of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). The climate data indicated that both precipitation and temperature increased at seasonal and annual scales from 2020 to 2050 under RCP4.5 and 8.5 scenarios. The future land use changes were predicted through the CA-Markov model. The land use predictions of 2025, 2035, and 2045 indicated rising forest areas with decreased agricultural land and grassland. In this study, three scenarios including only LULC change, only climate change, and combined climate and LULC change were established. The SWAT model was calibrated, validated, and used to simulate the water balance under the three scenarios. The results showed that increased rainfall and temperature may lead to increased runoff, water yield, and ET in spring, summer, and autumn and to decreased runoff, water yield, and ET in winter from 2020 to 2050. However, LULC change, compared with climate change, may have a smaller impact on the water balance. On an annual scale, runoff and water yield may gradually decrease, but ET may increase. The combined effects of both LULC and climate changes on water balance in the future were similar to the variation trend of climate changes alone at both annual and seasonal scales. The results obtained in this study provide further insight into the availability of future streamflow and can aid in water resource management planning in the study area.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhiqi Wang ◽  
Xiaobo Feng ◽  
Zhihong Yao ◽  
Zhaolong Ma ◽  
Guodong Ji

Soil moisture is a crucial factor limiting the growth and survival of plants on the Loess Plateau. Its level has a severe impact on plants’ growth and development and the type and distribution characteristics of communities. This study area is the Jihe Basin in the Loess Plateau, China. Multiple linear regression models with different environmental variables (land use, topographic and meteorological factors, etc.) were developed to simulate soil moisture’s spatial and temporal changes by integrating field experiments, indoor analysis, and GIS spatial analysis. The model performances were evaluated in the Jihe Basin, with soil moisture content measurements. The result shows that soil moisture content is positively correlated with soil bulk density, monthly rainfall, topographic wetness index, land use coefficient, and slope aspect coefficient but negatively correlated with the monthly-averaged temperature and the relative elevation coefficient. The selected variables are all related to the soil moisture content and can account for 75% of the variations of soil moisture content, and the remaining 25% of the variations are related to other factors. Comparing the simulated and measured values at all sampling points shows that the average error of all the simulated values is 0.09, indicating that the simulation has high accuracy. The spatial distribution of soil moisture content is significantly affected by land use and topographic factors, and seasonal variation is remarkable in the year. Seasonal variation of soil moisture content is determined by the seasonal variation of rainfall and the air temperature (determining evaporation) and vegetation growth cycle. Therefore, the proposed model can simulate the spatial and temporal variation of soil moisture content and support developing the soil and water loss model on a basin scale.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Zhixiang Lu ◽  
Songbing Zou ◽  
Zuodong Qin ◽  
Yonggang Yang ◽  
Honglang Xiao ◽  
...  

We applied an integrated approach to investigate the impacts of land use and land cover (LULC) changes on hydrology at different scales in the Loess Plateau of China. Hydrological modeling was conducted for the LULC maps from remote sensing images at two times in the Upper Fenhe River watershed using the SWAT model. The main LULC changes in this watershed from 1995 to 2010 were the transformation of farmland into forests, grassland, and built-up land. The simulation results showed that forested land contributed more than any other LULC class to water yield, but built-up land had most impact due to small initial loss and infiltration. At basin scale, a comparison of the simulated hydrological components of two LULC maps showed that there were slight increases in average annual potential evapotranspiration, actual evapotranspiration, and water yield, but soil water decreased, between the two intervals. In subbasins, obvious LULC changes did not have clear impacts on hydrology, and the impacts may be affected by precipitation conditions. By linking a hydrological model to remote sensing image analysis, our approach of quantifying the impacts of LULC changes on hydrology at different scales provide quantitative information for stakeholders in making decisions for land and water resource management.


2020 ◽  
Author(s):  
Hao Chen ◽  
Luuk Fleskens ◽  
Jantiene Baartman ◽  
Fei Wang ◽  
Simon Moolenaar ◽  
...  

<p><strong>Abstract: </strong>Land use and climate change are recognized as two major drivers affecting surface streamflow. On the Chinese Loess Plateau, implementation of several land restoration projects has changed land cover in recent decades. The main objectives of this study were to understand how streamflow evolved on the Loess Plateau and how land use and climate change have contributed to this change. In this study, we selected 22 hydrological modelling studies covering 25 different watersheds in the Loess Plateau and we performed a meta-analysis by using the hydrological and metrological data collected from these studies. The results indicate a streamflow decrease in 41 of a total of 52 case studies whereas precipitation change was found to be non-significant in the majority of the cases. Streamflow reduction was estimated to be -0.46mm/year by meta-analysis across all case studies. Land use change was estimated to have 63.52% impact on the streamflow reduction whereas climate change accounted for 36.48% of the impact. Using meta-regression, an increasing soil and water conservation area was found to be positively correlated to streamflow reduction. We conclude that in the Chinese Loess Plateau, streamflow shows a decreasing trend and land restoration is the major cause of this reduction. To the knowledge of the authors, this is the first study that estimates streamflow dynamics across many watersheds on the entire Loess Plateau.</p>


2018 ◽  
Vol 10 (12) ◽  
pp. 4676 ◽  
Author(s):  
Hongfei Zhao ◽  
Hongming He ◽  
Jingjing Wang ◽  
Chunyu Bai ◽  
Chuangjuan Zhang

An analysis of land use/cover change (LUCC) on the Loess Plateau over the past 30 years and its environmental effects was performed to provide scientific guidance for a sustainable development policy for the regional ecological environment and social economy. Geostatistical and trend analyses are used to study the LUCC characteristics, driving forces and environmental effects, and the relationship between LUCC and regional sustainable development is explored. The following results were obtained: (1) Overall, the land use structure has not changed, with grassland, farmland, and forest land remaining dominant; however, the vegetation coverage has significantly increased, especially in the central area. (2) LUCC is affected by climate change and human activities, with greater climate change impacts in the northwest than the southeast and greater among which human-induced impacts on the hilly/gully region in the central part. (3) LUCC will produce long-term ecological and environmental processes, such as surface runoff, soil erosion, soil moisture and carbon cycling. Vegetation restoration has both negative and positive effects on the regional ecological environment. Vegetation productivity on the Loess Plateau has approached the water resource carrying capacity threshold. Therefore, improving artificial vegetation stability and promoting the water resources balance have become the main strategies for promoting sustainable development on the Loess Plateau.


2021 ◽  
Author(s):  
Li Gu ◽  
Zhiwen Gong ◽  
Yuankun Bu

Abstract Forest fragmentation is one of the major environmental issues that the international community is generally concerned about under the background of global climate change. Studying the impact and the interaction mechanism of land use change processes on landscape fragmentation is important to gaining a comprehensive understanding of the ecosystem response to human activities and global climate change. Based on the implementation background for the “Grain for Green” Project, we selected the Loess Plateau as the research area and used the coupled future land use simulation (FLUS) model and landscape fragmentation model to explore the temporal and spatial changes in forest and grass landscape fragmentation. The results showed that (1) Woodland, grassland, and cropland are the main landscape types, accounting for about 90% of the total area. In addition, the area of cropland initially increased and then decreased, while the area of woodland and grassland exhibited the opposite trend Oover the last 35 years. In particular, the period from 2000 to 2015 was a forest and grass restoration stage, and the average annual rate of forest and grass restoration reached 0.56%. (2) The FLUS model was used to predict the land use on the Loess Plateau in 2030. The kappa coefficient was 0.85, and the figure of merit coefficient (FOM) was 0.11 for a 1% random sampling, which are within a reasonable range, and the simulation results are also consistent with the objective change in the current social and economic development. (3) The fragmentation of woodland and grassland were dominated by edge type and core type. The core type had a concentrated distribution and an absolute advantage, accounting for more than 75% of the total area. It is predicted that the landscape fragmentation will gradually slowdown in 2030 under different intensities of the “Grain for Green” project. The dynamics of landscape fragmentation based on land use changes are conducive to the reasonable planning and objective evaluation of woodland and grassland spatial allocation and quality improvement, and provide an important basis for the formulation of ecological protection and land management policies.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1755
Author(s):  
Shuo Wang ◽  
Chenfeng Cui ◽  
Qin Dai

Since the early 2000s, the vegetation cover of the Loess Plateau (LP) has increased significantly, which has been fully recorded. However, the effects on relevant eco-hydrological processes are still unclear. Here, we made an investigation on the changes of actual evapotranspiration (ETa) during 2000–2018 and connected them with vegetation greening and climate change in the LP, based on the remote sensing data with correlation and attribution analysis. Results identified that the average annual ETa on the LP exhibited an obvious increasing trend with the value of 9.11 mm yr−1, and the annual ETa trend was dominated by the changes of ETa in the third quarter (July, August, and September). The future trend of ETa was predicted by the Hurst exponent. Partial correlation analysis indicated that annual ETa variations in 87.8% regions of the LP were controlled by vegetation greening. Multiple regression analysis suggested that the relative contributions of potential evapotranspiration (ETp), precipitation, and normalized difference vegetation index (NDVI), to the trend of ETa were 5.7%, −26.3%, and 61.4%, separately. Vegetation greening has a close relationship with the Grain for Green (GFG) project and acts as an essential driver for the long-term development trend of water consumption on the LP. In this research, the potential conflicts of water demanding between the natural ecosystem and social-economic system in the LP were highlighted, which were caused by the fast vegetation expansion.


2021 ◽  
Vol 13 (12) ◽  
pp. 2358
Author(s):  
Linjing Qiu ◽  
Yiping Wu ◽  
Zhaoyang Shi ◽  
Yuting Chen ◽  
Fubo Zhao

Quantitatively identifying the influences of vegetation restoration (VR) on water resources is crucial to ecological planning. Although vegetation coverage has improved on the Loess Plateau (LP) of China since the implementation of VR policy, the way vegetation dynamics influences regional evapotranspiration (ET) remains controversial. In this study, we first investigate long-term spatiotemporal trends of total ET (TET) components, including ground evaporation (GE) and canopy ET (CET, sum of canopy interception and canopy transpiration) based on the GLEAM-ET dataset. The ET changes are attributed to VR on the LP from 2000 to 2015 and these results are quantitatively evaluated here using the Community Land Model (CLM). Finally, the relative contributions of VR and climate change to ET are identified by combining climate scenarios and VR scenarios. The results show that the positive effect of VR on CET is offset by the negative effect of VR on GE, which results in a weak variation in TET at an annual scale and an increased TET is only shown in summer. Regardless of the representative concentration pathway (RCP4.5 or RCP8.5), differences resulted from the responses of TET to different vegetation conditions ranging from −3.7 to −1.2 mm, while climate change from RCP4.5 to RCP8.5 caused an increase in TET ranging from 0.1 to 65.3 mm. These findings imply that climate change might play a dominant role in ET variability on the LP, and this work emphasizes the importance of comprehensively considering the interactions among climate factors to assess the relative contributions of VR and climate change to ET.


Author(s):  
Hui Wei ◽  
Wenwu Zhao ◽  
Han Wang

Large-scale vegetation restoration greatly changed the soil erosion environment in the Loess Plateau since the implementation of the “Grain for Green Project” (GGP) in 1999. Evaluating the effects of vegetation restoration on soil erosion is significant to local soil and water conservation and vegetation construction. Taking the Ansai Watershed as the case area, this study calculated the soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration, using the Chinese Soil Loess Equation (CSLE), based on rainfall and soil data, remote sensing images and socio-economic data. The effect of vegetation restoration on soil erosion was evaluated by comparing the average annual soil erosion modulus under two scenarios among 16 years. The results showed: (1) vegetation restoration significantly changed the local land use, characterized by the conversion of farmland to grassland, arboreal land, and shrub land. From 2000 to 2015, the area of arboreal land, shrub land, and grassland increased from 19.46 km2, 19.43 km2, and 719.49 km2 to 99.26 km2, 75.97 km2, and 1084.24 km2; while the farmland area decreased from 547.90 km2 to 34.35 km2; (2) the average annual soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration was 114.44 t/(hm²·a) and 78.42 t/(hm²·a), respectively, with an average annual reduction of 4.81 × 106 t of soil erosion amount thanks to the vegetation restoration; (3) the dominant soil erosion intensity changed from “severe and light erosion” to “moderate and light erosion”, vegetation restoration greatly improved the soil erosion environment in the study area; (4) areas with increased erosion and decreased erosion were alternately distributed, accounting for 48% and 52% of the total land area, and mainly distributed in the northwest and southeast of the watershed, respectively. Irrational land use changes in local areas (such as the conversion of farmland and grassland into construction land, etc.) and the ineffective implementation of vegetation restoration are the main reasons leading to the existence of areas with increased erosion.


Sign in / Sign up

Export Citation Format

Share Document