Static Stability Associated with Southern Hemisphere Blocking Onsets

Author(s):  
Li Dong ◽  
Stephen Colucci

<p>The horizontal and temporal variation of static stability prior to blocking onset is characterized through composite analysis of blocking events in the Southern Hemisphere. It is found that a local minimum of static stability in the upper troposphere and on the tropopause is achieved over the block-onset region when blocking onset takes place. From the perspective of isentropic potential vorticity, blocking onset is accompanied by extratropical tropopause elevation and a local low isentropic potential vorticity anomaly that is formed right under the elevated tropopause. This low isentropic potential vorticity anomaly is coincident with a local minimum of static stability over the block-onset region. In addition, based on static stability budget analysis, it revealed that the decrease of static stability in the upper troposphere and on the tropopuase prior to blocking onset is attributable to horizontal advection of low static stability from subtropics to midlatitude as well as the stretching effect associated with upper-level convergence, with the horizontal advection forcing being the primary contributor. On the other hand, the vertical advection of static stability tends to oppose the decreasing static stability through advecting more stable air downward such that it stabilizes the local air over the block-onset region. Furthermore, the indirect and direct effect of latent heat to the local change of static stability over the block-onset region are also discussed, respectively.</p>

2019 ◽  
Vol 76 (1) ◽  
pp. 209-229 ◽  
Author(s):  
Patrick Duran ◽  
John Molinari

Abstract Upper-level static stability (N2) variations can influence the evolution of the transverse circulation and potential vorticity in intensifying tropical cyclones (TCs). This paper examines these variations during the rapid intensification (RI) of a simulated TC. Over the eye, N2 near the tropopause decreases and the cold-point tropopause rises by up to 4 km at the storm center. Outside of the eye, N2 increases considerably just above the cold-point tropopause and the tropopause remains near its initial level. A budget analysis reveals that the advection terms, which include differential advection of potential temperature θ and direct advection of N2, are important throughout the upper troposphere and lower stratosphere. These terms are particularly pronounced within the eye, where they destabilize the layer near and above the cold-point tropopause. Outside of the eye, a radial–vertical circulation develops during RI, with strong outflow below the tropopause and weak inflow above. Differential advection of θ near the outflow jet provides forcing for stabilization below the outflow maximum and destabilization above. Turbulence induced by vertical wind shear on the flanks of the outflow maximum also modifies the vertical stability profile. Meanwhile, radiative cooling tendencies at the top of the cirrus canopy generally act to destabilize the upper troposphere and stabilize the lower stratosphere. The results suggest that turbulence and radiation, alongside differential advection, play fundamental roles in the upper-level N2 evolution of TCs. These N2 tendencies could have implications for both the TC diurnal cycle and the tropopause-layer potential vorticity evolution in TCs.


2006 ◽  
Vol 134 (8) ◽  
pp. 2251-2265 ◽  
Author(s):  
Satoru Yokoi ◽  
Takehiko Satomura

Abstract Mechanisms of the northward movement of submonthly scale vortices over the Bay of Bengal during the boreal summer (May–September) are studied with the use of a vorticity budget analysis applied to the ECMWF 40-yr Re-Analysis (ERA-40) data. To quantitatively evaluate the contribution from each term that constitutes the vorticity anomaly equation to the movement of the vortices, a vector measure, termed the forcing vector (FV), is used in the present study. Because the axis of the submonthly scale relative vorticity anomaly does not tilt meridionally below the 200-hPa level, the mechanisms of the northward movement of a composite submonthly scale vortex integrated from the surface to the 100-hPa level [the barotropic component (BTC)] are studied. The barotropic vortex moves northwestward, with northward speeds of 0.9° day−1. The meridional component of the FV (MFV), which represents the contribution to the meridional component of the movement, reveals that the primary and secondary terms that contribute to the northward movement are the advection of the vortex by the environmental meridional wind, and the tilting effect of the environmental horizontal vorticity vector by the vertical pressure velocity anomaly associated with the vortex, respectively. The former term works mainly in the lower troposphere, while the latter operates in the middle and upper troposphere. The first baroclinic component (FBCC) of the vortex in the troposphere also moves northwestward with almost the same northward speed as the BTC. Mechanisms of the northward movement of the FBCC are also clarified in the present study through examination of the MFV. The primary contributing term is the same as that of the BTC, while the tilting term hinders the northward movement of the FBCC. For the FBCC, the secondary contributing term is the advection of the planetary vorticity by the meridional wind anomaly associated with the horizontal convergence and divergence anomalies in the lower and upper troposphere, respectively. The present study also discusses the phase relation between the BTC and the FBCC from the viewpoint of their northward movement in an environment of easterly vertical shear.


Author(s):  
Thumeka Mkololo ◽  
Nkanyiso Mbatha ◽  
Sivakumar Venkataraman ◽  
Nelson Begue ◽  
Gerrie Coetzee ◽  
...  

This study aims to investigate the Stratosphere-Troposphere Exchange (STE) events and ozone trends over Irene (25.5°S, 28.1°E). Twelve years of ozonesondes data (2000–2007, 2012–2015) from Irene station operating in the framework of the Southern Hemisphere Additional Ozonesodes (SHADOZ) was used to study the troposphere (0–16 km) and stratosphere (17– 28 km) ozone (O3) vertical profiles. Ozone profiles were grouped into three categories (2000–2003, 2004–2007 and 2012–2015) and average composites were calculated for each category. Fifteen O3 enhancement events were identified over the study period. These events were observed in all seasons (one event in summer, four events in autumn, five events in winter and five events in spring), however, they predominantly occur in winter and spring. The STE events presented here are observed to be influenced by the Southern Hemisphere polar vortex. During the STE events, the advected potential vorticity maps assimilated using Modélisation Isentrope du transport Méso–échelle de l’Ozone Stratosphérique par Advection (MIMOSA) model for the 350 K (~12–13 km) isentropic level indicated a transport of high latitude air masses which seems to be responsible for the reduction of the O3 mole fractions at the lower stratosphere over Irene which takes place at the same time with the enhancement of ozone in the upper troposphere. In general, the stratosphere is dominated by higher Modern Retrospective Analysis for Research Application (MERRA-2) potential vorticity (PV) values compared to the troposphere. However, during the STE events, higher PV values from the stratosphere were observed to intrude the troposphere. Ozone decline was observed from 12 km to 24 km with highest decline occurring from 14 km to 18 km. An average decrease of 6.0 and 9.1% was calculated from 12 to 24 km in 2004–2007 and 2012–2015 respectively. The observed decline occurred in the upper troposphere and lower stratosphere with winter and spring showing more decline compared with summer and autumn.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 586 ◽  
Author(s):  
Thumeka Mkololo ◽  
Nkanyiso Mbatha ◽  
Venkataraman Sivakumar ◽  
Nelson Bègue ◽  
Gerrie Coetzee ◽  
...  

This study aims to investigate the Stratosphere-Troposphere Exchange (STE) events and ozone changes over Irene (25.5° S, 28.1° E). Twelve years of ozonesondes data (2000–2007, 2012–2015) from Irene station operating in the framework of the Southern Hemisphere Additional Ozonesodes (SHADOZ) was used to study the troposphere (0–16 km) and stratosphere (17–28 km) ozone (O3) vertical profiles. Ozone profiles were grouped into three categories (2000–2003, 2004–2007 and 2012–2015) and average composites were calculated for each category. Fifteen O3 enhancement events were identified over the study period. These events were observed in all seasons (one event in summer, four events in autumn, five events in winter and five events in spring); however, they predominantly occur in winter and spring. The STE events presented here are observed to be influenced by the Southern Hemisphere polar vortex. To strengthen the investigation into STE events, advected potential vorticity maps were used, which were assimilated using Modélisation Isentrope du transport Méso–échelle de l’Ozone Stratosphérique par Advection (MIMOSA) model for the 350 K (~12–13 km) isentropic level. These maps indicated transport of high latitude air masses responsible for the reduction of the O3 mole fractions at the lower stratosphere over Irene which coincides with the enhancement of ozone in the upper troposphere. In general, the stratosphere is dominated by higher Modern Retrospective Analysis for Research Application (MERRA-2) potential vorticity (PV) values compared to the troposphere. However, during the STE events, higher PV values from the stratosphere were observed to intrude the troposphere. Ozone decline was observed from 12 km to 24 km with the highest decline occurring from 14 km to 18 km. An average decrease of 6.0% and 9.1% was calculated from 12 to 24 km in 2004–2007 and 2012–2015 respectively, when compared with 2000–2003 average composite. The observed decline occurred in the upper troposphere and lower stratosphere with winter and spring showing more decline compared with summer and autumn.


2020 ◽  
Vol 148 (11) ◽  
pp. 4397-4414
Author(s):  
Shellie M. Rowe ◽  
Matthew H. Hitchman

AbstractThe stalling and rapid destruction of a potential vorticity (PV) anomaly in the upper troposphere–lower stratosphere (UTLS) by convectively detrained inertially unstable air is described. On 20 August 2018, 10–15 in. (~0.3–0.4 m) of rain fell on western Dane County, Wisconsin, primarily during 0100–0300 UTC 21 August (1900–2100 CDT 20 August), leading to extreme local flooding. Dynamical aspects are investigated using the University of Wisconsin Nonhydrostratic Modeling System (UWNMS). Results are compared with available radiosonde, radar, total rainfall estimates, satellite infrared, and high-resolution European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses. Using ECMWF analyses, the formation of the UTLS PV anomaly is traced to its origin a week earlier in a PV streamer over the west coast of North America. The rainfall maximum over southern Wisconsin was associated with this PV anomaly, whereby convection forming in the warm-upglide sector rotated cyclonically into the region. The quasi-stationarity of this rainfall feature was aided by a broad northeastward surge of inertially unstable convective outflow air into southeastern Wisconsin, which coincided with stalling of the eastward progression of the PV anomaly and its diversion into southern Wisconsin, extending heavy rainfall for several hours. Cessation of rainfall coincided with dilution of the PV maximum in less than an hour (2100–2200 CDT), associated with the arrival of negative PV in the upper troposphere. The region of negative PV was created when convection over Illinois transported air with low wind speed into northeastward shear. This feature is diagnosed using the convective momentum transport hypothesis.


2007 ◽  
Vol 64 (12) ◽  
pp. 4432-4444 ◽  
Author(s):  
Sushil Shetty ◽  
Xylar S. Asay-Davis ◽  
Philip S. Marcus

Abstract In this paper, Jupiter’s Great Red Spot (GRS) is used to determine properties of the Jovian atmosphere that cannot otherwise be found. These properties include the potential vorticity of the GRS and its neighboring jet streams, the shear imposed on the GRS by the jet streams, and the vertical entropy gradient (i.e., Rossby deformation radius). The cloud cover of the GRS, which is often used to define the GRS’s area and aspect ratio, is found to differ significantly from the region of the GRS’s potential vorticity anomaly. The westward-going jet stream to the north of the GRS and the eastward-going jet stream to its south are each found to have a large potential vorticity “jump.” The jumps have opposite signs, and as a consequence of their interaction with the GRS, the shear imposed on the GRS is reduced. The aspect ratio of the GRS’s potential vorticity anomaly depends on the ratio of the imposed shear to the strength of the anomaly. The east–west to north–south aspect ratio is found to be ∼2:1, but without the opposing jumps it would be much greater. The GRS’s high-speed collar and quiescent interior require that the potential vorticity in the interior be approximately half that in the collar. No other persistent geophysical vortex has a significant local minimum of potential vorticity in its interior, and laboratory vortices with such a minimum are unstable.


2011 ◽  
Vol 68 (4) ◽  
pp. 798-811 ◽  
Author(s):  
Thando Ndarana ◽  
Darryn W. Waugh

Abstract A 30-yr climatology of Rossby wave breaking (RWB) on the Southern Hemisphere (SH) tropopause is formed using 30 yr of reanalyses. Composite analysis of potential vorticity and meridional fluxes of wave activity show that RWB in the SH can be divided into two broad categories: anticyclonic and cyclonic events. While there is only weak asymmetry in the meridional direction and most events cannot be classified as equatorward or poleward in terms of the potential vorticity structure, the position and structure of the fluxes associated with equatorward breaking differs from those of poleward breaking. Anticyclonic breaking is more common than cyclonic breaking, except on the lower isentrope examined (320 K). There are marked differences in the seasonal variations of RWB on the two surfaces, with a winter minimum for RWB around 350 K but a summer minimum for RWB around 330 K. These seasonal variations are due to changes in the location of the tropospheric jets and dynamical tropopause. During winter the subtropical jet and tropopause at 350 K are collocated in the Australian–South Pacific Ocean region, resulting in a seasonal minimum in the 350-K RWB. During summer the polar front jet and 330-K tropopause are collocated over the Southern Atlantic and Indian Oceans, inhibiting RWB in this region.


2018 ◽  
Vol 31 (24) ◽  
pp. 9903-9920 ◽  
Author(s):  
Elina Plesca ◽  
Stefan A. Buehler ◽  
Verena Grützun

Atmosphere-only CMIP5 idealized climate experiments with quadrupling of atmospheric CO2 are analyzed to understand the fast response of the tropical overturning circulation to this forcing and the main mechanism of this response. A new metric for the circulation, based on pressure velocity in the subsidence regions, is defined, taking advantage of the dynamical stability of these regions and their reduced sensitivity to the GCM’s cloud and precipitation parameterization schemes. This definition permits us to decompose the circulation change into a sum of relative changes in subsidence area, static stability, and heating rate. A comparative analysis of aqua- and Earth-like planet experiments reveals the effect of the land–sea contrast on the total change in circulation. On average, under the influence of CO2 increase without surface warming, the atmosphere radiatively cools less, and this drives the 3%–4% slowdown of the tropical circulation. Even in an Earth-like planet setup, the circulation weakening is dominated by the radiatively driven changes in the subsidence regions over the oceans. However, the land–sea differential heating contributes to the vertical pattern of the circulation weakening by driving the vertical expansion of the tropics. It is further found that the surface warming would, independently of the CO2 effect, lead to up to a 12% slowdown in circulation, dominated by the enhancement of the static stability in the upper troposphere. The two mechanisms identified above combine in the coupled experiment with abrupt quadrupling, causing a circulation slowdown (focused in the upper troposphere) of up to 18%. Here, the independent effect of CO2 has a considerable impact only at time scales less than one year, being overtaken quickly by the impact of surface warming.


2010 ◽  
Vol 10 (8) ◽  
pp. 19175-19194 ◽  
Author(s):  
Y. Tomikawa ◽  
T. Yamanouchi

Abstract. An analysis of the static stability and ozone vertical gradient in the ozone tropopause based (OTB) coordinate is applied to the ozonesonde data at 10 stations in the Southern Hemisphere (SH) extratropics. The tropopause inversion layer (TIL) with a static stability maximum just above the tropopause shows similar seasonal variations at two Antarctic stations, which are latitudinally far from each other. Since the sunshine hour varies with time in a quite different way between these two stations, it implies that the radiative heating due to solar ultraviolet absorption of ozone does not contribute to the seasonal variation of the TIL. A meridional section of the static stability in the OTB coordinate shows that the static stability just above the tropopause has a large latitudinal gradient between 60° S and 70° S in austral winter because of the absence of the TIL over the Antarctic. It is accompanied by an increase of westerly shear with height above the tropopause, so that the polar-night jet is formed above this latitude region. This result suggests a close relationship between the absence of the TIL and the stratospheric polar vortex in the Antarctic winter. A vertical gradient of ozone mixing ratio, referred to as ozone vertical gradient, around the tropopause shows similar latitudinal and seasonal variations with the static stability in the SH extratropics. In a height region above the TIL, a small ozone vertical gradient in the midlatitudes associated with the Antarctic ozone hole is observed in a height region of the subvortex but not around the polar vortex. This is a clear evidence of active latitudinal mixing between the midlatitudes and subvortex.


Sign in / Sign up

Export Citation Format

Share Document