Altitude dependent empirical modeling of the topside ionosphere and plasmasphere using GPS- TEC from Swarm, GRACE-FO and the Sentinel satellites.

Author(s):  
Lucas Schreiter ◽  
Claudia Stolle ◽  
Daniel Arnold ◽  
Adrian Jäggi

<p>Slant Total Electron Content (sTEC) measurements can be obtained by dual-frequency GPS<br>onboard Low Earth Orbiting (LEO) satellites. Within the last few years, a fleet of LEO Satellites at<br>altitudes ranging from 450 km (Swarm A/C) to 815 km (Sentinel 3) became operational. With<br>Swarm B, the recently launched GRACE-FO, and the Sentinel 1 and 2 satellites orbiting at<br>intermediate altitudes, we gain insight into the altitude dependent profile of the topside ionosphere<br>and plasmasphere.<br>We make use of this constellation to estimate a global three dimensional model of the electron<br>density distribution and will also carefully asses the impact of different profile functions, geometry-<br>free phase center variation maps and the P1-P2 receiver biases. Since the absolute value of the P1-<br>P2 biases are generally unknown, we focus on a consistent estimation for the whole LEO<br>constellation.<br>We will present first results for selected months in 2019 and investigate the day to day variability of<br>the topside ionosphere and plasmasphere. We also intend to make use of COSMIC-2 data to<br>improve local time coverage in equatorial regions.</p>

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alaa A. Elghazouly ◽  
Mohamed I. Doma ◽  
Ahmed A. Sedeek

Abstract Due to the ionosphere delay, which has become the dominant GPS error source, it is crucial to remove the ionospheric effect before estimating point coordinates. Therefore, different agencies started to generate daily Global Ionosphere Maps (GIMs); the Vertical Total Electron Content (VTEC) values represented in GIMs produced by several providers can be used to remove the ionosphere error from observations. In this research, An analysis will be carried with three sources for VTEC maps produced by the Center for Orbit Determination in Europe (CODE), Regional TEC Mapping (RTM), and the International Reference Ionosphere (IRI). The evaluation is focused on the effects of a specific ionosphere GIM correction on the precise point positioning (PPP) solutions. Two networks were considered. The first network consists of seven Global Navigation Satellite Systems (GNSS) receivers from (IGS) global stations. The selected test days are six days, three of them quiet, and three other days are stormy to check the influence of geomagnetic storms on relative kinematic positioning solutions. The second network is a regional network in Egypt. The results show that the calculated coordinates using the three VTEC map sources are far from each other on stormy days rather than on quiet days. Also, the standard deviation values are large on stormy days compared to those on quiet days. Using CODE and RTM IONEX file produces the most precise coordinates after that the values of IRI. The elimination of ionospheric biases over the estimated lengths of many baselines up to 1000 km has resulted in positive findings, which show the feasibility of the suggested assessment procedure.


2011 ◽  
Vol 29 (2) ◽  
pp. 229-236 ◽  
Author(s):  
P. Sibanda ◽  
L. A. McKinnell

Abstract. Successful empirical modeling of the topside ionosphere relies on the availability of good quality measured data. The Alouette, ISIS and Intercosmos-19 satellite missions provided large amounts of topside sounder data, but with limited coverage of relevant geophysical conditions (e.g., geographic location, diurnal, seasonal and solar activity) by each individual mission. Recently, methods for inferring the electron density distribution in the topside ionosphere from Global Positioning System (GPS)-based total electron content (TEC) measurements have been developed. This study is focused on the modeling efforts in South Africa and presents the implementation of a technique for reconstructing the topside ionospheric electron density (Ne) using a combination of GPS-TEC and ionosonde measurements and empirically obtained Upper Transition Height (UTH). The technique produces reasonable profiles as determined by the global models already in operation. With the added advantage that the constructed profiles are tied to reliable measured GPS-TEC and the empirically determined upper transition height, the technique offers a higher level of confidence in the resulting Ne profiles.


2020 ◽  
Vol 12 (14) ◽  
pp. 2200
Author(s):  
Chao Gao ◽  
Shuanggen Jin ◽  
Liangliang Yuan

Geomagnetic storms are extreme space weather events, which have considerable impacts on the ionosphere and power transmission systems. In this paper, the ionospheric responses to the geomagnetic storm on 22 June 2015, are analyzed from ground-based and satellite-based Global Navigation Satellite System (GNSS) observations as well as observational data of digital ionosondes, and the main physical mechanisms of the ionospheric disturbances observed during the geomagnetic storm are discussed. Salient positive and negative storms are observed from vertical total electron content (VTEC) based on ground-based GNSS observations at different stages of the storm. Combining topside observations of Low-Earth-Orbit (LEO) satellites (GRACE and MetOp satellites) with different orbital altitudes and corresponding ground-based observations, the ionospheric responses above and below the orbits are studied during the storm. To obtain VTEC from the slant TEC between Global Positioning System (GPS) and LEO satellites, we employ a multi-layer mapping function, which can effectively reduce the overall error caused by the single-layer geometric assumption where the horizontal gradient of the ionosphere is not considered. The results show that the topside observations of the GRACE satellite with a lower orbit can intuitively detect the impact caused by the fluctuation of the F2 peak height (hmF2). At the same time, the latitude range corresponding to the peak value of the up-looking VTEC on the event day becomes wider, which is the precursor of the Equatorial Ionization Anomaly (EIA). However, no obvious response is observed in the up-looking VTEC from MetOp satellites with higher orbits, which indicates that the VTEC responses to the geomagnetic storm mainly take place below the orbit of MetOp satellites.


2021 ◽  
Vol 13 (13) ◽  
pp. 2636
Author(s):  
Junjun Yuan ◽  
Shanshi Zhou ◽  
Xiaogong Hu ◽  
Long Yang ◽  
Jianfeng Cao ◽  
...  

Currently, low Earth orbit (LEO) satellites are attracting great attention in the navigation enhancement field because of their stronger navigation signal and faster elevation variation than medium Earth orbit (MEO) satellites. To meet the need for real-time and precise positioning, navigation and timing (PNT) services, the first and most difficult task is correcting errors in the process of precise LEO orbit and clock offset determination as much as possible. Launched in 29 September 2018, the CentiSpace-1 (CS01) satellite is the first experimental satellite of LEO-based navigation enhancement system constellations developed by Beijing Future Navigation Technology Co. Ltd. To analyze the impact of the attitude model, carrier phase wind-up (PWU) and phase center variation (PCV) on precise LEO orbit and clock offset in an LEO-based navigation system that needs extremely high precision, we not only select the CS01 satellite as a testing spacecraft, but also the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO). First, the dual-frequency global positioning system (GPS) data are collected and the data quality is assessed by analyzing the performance of tracking GPS satellites, multipath errors and signal to noise ratio (SNR) variation. The analysis results show that the data quality of GRACE-FO is slightly better than CS01. With residual analysis and overlapping comparison, a further orbit quality improvement is possible when we further correct the errors of the attitude model, PWU and PCV in this paper. The final three-dimensional (3D) root mean square (RMS) of the overlapping orbit for GRACE-FO and CS01 is 2.08 cm and 1.72 cm, respectively. Meanwhile, errors of the attitude model, PWU and PCV can be absorbed partly in the clock offset and these errors can generate one nonnegligible effect, which can reach 0.02~0.05 ns. The experiment results indicate that processing the errors of the attitude model, PWU and PCV carefully can improve the consistency of precise LEO orbit and clock offset and raise the performance of an LEO-based navigation enhancement system.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Baocheng Zhang ◽  
Chuanbao Zhao ◽  
Robert Odolinski ◽  
Teng Liu

AbstractPrecise Point Positioning (PPP), initially developed for the analysis of the Global Positing System (GPS) data from a large geodetic network, gradually becomes an effective tool for positioning, timing, remote sensing of atmospheric water vapor, and monitoring of Earth’s ionospheric Total Electron Content (TEC). The previous studies implicitly assumed that the receiver code biases stay constant over time in formulating the functional model of PPP. In this contribution, it is shown this assumption is not always valid and can lead to the degradation of PPP performance, especially for Slant TEC (STEC) retrieval and timing. For this reason, the PPP functional model is modified by taking into account the time-varying receiver code biases of the two frequencies. It is different from the Modified Carrier-to-Code Leveling (MCCL) method which can only obtain the variations of Receiver Differential Code Biases (RDCBs), i.e., the difference between the two frequencies’ code biases. In the Modified PPP (MPPP) model, the temporal variations of the receiver code biases become estimable and their adverse impacts on PPP parameters, such as ambiguity parameters, receiver clock offsets, and ionospheric delays, are mitigated. This is confirmed by undertaking numerical tests based on the real dual-frequency GPS data from a set of global continuously operating reference stations. The results imply that the variations of receiver code biases exhibit a correlation with the ambient temperature. With the modified functional model, an improvement by 42% to 96% is achieved in the Differences of STEC (DSTEC) compared to the original PPP model with regard to the reference values of those derived from the Geometry-Free (GF) carrier phase observations. The medium and long term (1 × 104 to 1.5 × 104 s) frequency stability of receiver clocks are also significantly improved.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1551
Author(s):  
Zihuai Guo ◽  
Yibin Yao ◽  
Jian Kong ◽  
Gang Chen ◽  
Chen Zhou ◽  
...  

Global navigation satellite system (GNSS) can provide dual-frequency observation data, which can be used to effectively calculate total electron content (TEC). Numerical studies have utilized GNSS-derived TEC to evaluate the accuracy of ionospheric empirical models, such as the International Reference Ionosphere model (IRI) and the NeQuick model. However, most studies have evaluated vertical TEC rather than slant TEC (STEC), which resulted in the introduction of projection error. Furthermore, since there are few GNSS observation stations available in the Antarctic region and most are concentrated in the Antarctic continent edge, it is difficult to evaluate modeling accuracy within the entire Antarctic range. Considering these problems, in this study, GNSS STEC was calculated using dual-frequency observation data from stations that almost covered the Antarctic continent. By comparison with GNSS STEC, the accuracy of IRI-2016 and NeQuick2 at different latitudes and different solar radiation was evaluated during 2016–2017. The numerical results showed the following. (1) Both IRI-2016 and NeQuick2 underestimated the STEC. Since IRI-2016 utilizes new models to represent the F2-peak height (hmF2) directly, the IRI-2016 STEC is closer to GNSS STEC than NeQuick2. This conclusion was also confirmed by the Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC) occultation data. (2) The differences in STEC of the two models are both normally distributed, and the NeQuick2 STEC is systematically biased as solar radiation increases. (3) The root mean square error (RMSE) of the IRI-2016 STEC is smaller than that of the NeQuick2 model, and the RMSE of the two modeling STEC increases with solar radiation intensity. Since IRI-2016 relies on new hmF2 models, it is more stable than NeQuick2.


2012 ◽  
Vol 27 (2) ◽  
pp. 318-328 ◽  
Author(s):  
Svetlana Borodulina ◽  
Artem Kulachenko ◽  
Mikael Nygårds ◽  
Sylvain Galland

Abstract We have investigated a relation between micromechanical processes and the stress-strain curve of a dry fiber network during tensile loading. By using a detailed particle-level simulation tool we investigate, among other things, the impact of “non-traditional” bonding parameters, such as compliance of bonding regions, work of separation and the actual number of effective bonds. This is probably the first three-dimensional model which is capable of simulating the fracture process of paper accounting for nonlinearities at the fiber level and bond failures. The failure behavior of the network considered in the study could be changed significantly by relatively small changes in bond strength, as compared to the scatter in bonding data found in the literature. We have identified that compliance of the bonding regions has a significant impact on network strength. By comparing networks with weak and strong bonds, we concluded that large local strains are the precursors of bond failures and not the other way around.


2005 ◽  
Vol 58 (2) ◽  
pp. 241-256 ◽  
Author(s):  
Marcio Aquino ◽  
Terry Moore ◽  
Alan Dodson ◽  
Sam Waugh ◽  
Jock Souter ◽  
...  

Extensive ionospheric scintillation and Total Electron Content (TEC) data were collected by the Institute of Engineering Surveying and Space Geodesy (IESSG) in Northern Europe during years of great impact of the solar maximum on GNSS users (2001–2003). The ionospheric TEC is responsible for range errors due to its time delay effect on transionospheric signals. Electron density irregularities in the ionosphere, occurring frequently during these years, are responsible for (phase and amplitude) fluctuations on GNSS signals, known as ionospheric scintillation. Since June 2001 four GPS Ionospheric Scintillation and TEC Monitor receivers (the NovAtel/AJ Systems GSV4004) have been deployed at stations in the UK and Norway, forming a Northern European network, covering geographic latitudes from 53° to 70° N approximately. These receivers compute and record GPS phase and amplitude scintillation parameters, as well as TEC and TEC variations. The project involved setting up the network and developing automated archiving and data analysis strategies, aiming to study the impact of scintillation on DGPS and EGNOS users, and on different GPS receiver technologies. In order to characterise scintillation and TEC variations over Northern Europe, as well as investigate correlation with geomagnetic activity, long-term statistical analyses were also produced. This paper summarises our findings, providing an overview of the potential implications of ionospheric scintillation for the GNSS user in Northern Europe.


2021 ◽  
Vol 13 (8) ◽  
pp. 1559
Author(s):  
Fabricio S. Prol ◽  
M. Mainul Hoque

A 3D-model approach has been developed to describe the electron density of the topside ionosphere and plasmasphere based on Global Navigation Satellite System (GNSS) measurements onboard low Earth orbit satellites. Electron density profiles derived from ionospheric Radio Occultation (RO) data are extrapolated to the upper ionosphere and plasmasphere based on a linear Vary-Chap function and Total Electron Content (TEC) measurements. A final update is then obtained by applying tomographic algorithms to the slant TEC measurements. Since the background specification is created with RO data, the proposed approach does not require using any external ionospheric/plasmaspheric model to adapt to the most recent data distributions. We assessed the model accuracy in 2013 and 2018 using independent TEC data, in situ electron density measurements, and ionosondes. A systematic better specification was obtained in comparison to NeQuick, with improvements around 15% in terms of electron density at 800 km, 26% at the top-most region (above 10,000 km) and 26% to 55% in terms of TEC, depending on the solar activity level. Our investigation shows that the developed model follows a known variation of electron density with respect to geographic/geomagnetic latitude, altitude, solar activity level, season, and local time, revealing the approach as a practical and useful tool for describing topside ionosphere and plasmasphere using satellite-based GNSS data.


Sign in / Sign up

Export Citation Format

Share Document