Comparing the effect of shortwave penetration and mixing induced by non-breaking surface waves in an ocean climate model

Author(s):  
Shizhu Wang ◽  
Qiang Wang ◽  
Qi Shu ◽  
Patrick Scholz ◽  
Gerrit Lohmann ◽  
...  

<p>Numerical models have been widely utilized to simulate the ocean and climate system. Parameterizations of some important processes, however, including the vertical mixing induced by surface waves, are still missing in many ocean models. In this work we incorporate the vertical mixing induced by non-breaking surface waves derived from a wave model into the multi-resolution Finite Element Sea ice-Ocean Model (FESOM), and compare its effect with that of shortwave penetration, another key process to vertically redistribute the heat in the upper ocean. Numerical experiments reveal that both processes ameliorate the simulation of upper-ocean temperature in mid and low latitudes mainly on the summer hemisphere. The regions where nonbreaking wave generates stronger improvement are where large temperature bias exists. The non-breaking surface waves plays a more significant role in decreasing the mean cold biases at 50 m (by 1.0 °C, in comparison to 0.5 °C achieved by applying shortwave penetration). We conclude that the incorporation of mixing induced by non-breaking surface waves into FESOM is practically very helpful, and suggest that it needs to be considered in other ocean climate models as well.</p>

2006 ◽  
Vol 19 (16) ◽  
pp. 3973-3987 ◽  
Author(s):  
Patrick Wetzel ◽  
Ernst Maier-Reimer ◽  
Michael Botzet ◽  
Johann Jungclaus ◽  
Noel Keenlyside ◽  
...  

Abstract The influence of phytoplankton on the seasonal cycle and the mean global climate is investigated in a fully coupled climate model. The control experiment uses a fixed attenuation depth for shortwave radiation, while the attenuation depth in the experiment with biology is derived from phytoplankton concentrations simulated with a marine biogeochemical model coupled online to the ocean model. Some of the changes in the upper ocean are similar to the results from previous studies that did not use interactive atmospheres, for example, amplification of the seasonal cycle; warming in upwelling regions, such as the equatorial Pacific and the Arabian Sea; and reduction in sea ice cover in the high latitudes. In addition, positive feedbacks within the climate system cause a global shift of the seasonal cycle. The onset of spring is about 2 weeks earlier, which results in a more realistic representation of the seasons. Feedback mechanisms, such as increased wind stress and changes in the shortwave radiation, lead to significant warming in the midlatitudes in summer and to seasonal modifications of the overall warming in the equatorial Pacific. Temperature changes also occur over land where they are sometimes even larger than over the ocean. In the equatorial Pacific, the strength of interannual SST variability is reduced by about 10%–15% and phase locking to the annual cycle is improved. The ENSO spectral peak is broader than in the experiment without biology and the dominant ENSO period is increased to around 5 yr. Also the skewness of ENSO variability is slightly improved. All of these changes lead to the conclusion that the influence of marine biology on the radiative budget of the upper ocean should be considered in detailed simulations of the earth’s climate.


2010 ◽  
Vol 23 (1) ◽  
pp. 80-96 ◽  
Author(s):  
Jianjun Yin ◽  
Ronald J. Stouffer ◽  
Michael J. Spelman ◽  
Stephen M. Griffies

Abstract The unphysical virtual salt flux (VSF) formulation widely used in the ocean component of climate models has the potential to cause systematic and significant biases in modeling the climate system and projecting its future evolution. Here a freshwater flux (FWF) and a virtual salt flux version of the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL CM2.1) are used to evaluate and quantify the uncertainties induced by the VSF formulation. Both unforced and forced runs with the two model versions are performed and compared in detail. It is found that the differences between the two versions are generally small or statistically insignificant in the unforced control runs and in the runs with a small external forcing. In response to a large external forcing, however, some biases in the VSF version become significant, especially the responses of regional salinity and global sea level. However, many fundamental aspects of the responses differ only quantitatively between the two versions. An unexpected result is the distinctly different ENSO responses. Under a strong external freshwater forcing, the great enhancement of the ENSO variability simulated by the FWF version does not occur in the VSF version and is caused by the overexpansion of the top model layer. In summary, the principle assumption behind using virtual salt flux is not seriously violated and the VSF model has the ability to simulate the current climate and project near-term climate evolution. For some special studies such as a large hosing experiment, however, both the VSF formulation and the use of the FWF in the geopotential coordinate ocean model could have some deficiencies and one should be cautious to avoid them.


2021 ◽  
Author(s):  
Christian Zeman ◽  
Christoph Schär

<p>Since their first operational application in the 1950s, atmospheric numerical models have become essential tools in weather and climate prediction. As such, they are a constant subject to changes, thanks to advances in computer systems, numerical methods, and the ever increasing knowledge about the atmosphere of Earth. Many of the changes in today's models relate to seemingly unsuspicious modifications, associated with minor code rearrangements, changes in hardware infrastructure, or software upgrades. Such changes are meant to preserve the model formulation, yet the verification of such changes is challenged by the chaotic nature of our atmosphere - any small change, even rounding errors, can have a big impact on individual simulations. Overall this represents a serious challenge to a consistent model development and maintenance framework.</p><p>Here we propose a new methodology for quantifying and verifying the impacts of minor atmospheric model changes, or its underlying hardware/software system, by using ensemble simulations in combination with a statistical hypothesis test. The methodology can assess effects of model changes on almost any output variable over time, and can also be used with different hypothesis tests.</p><p>We present first applications of the methodology with the regional weather and climate model COSMO. The changes considered include a major system upgrade of the supercomputer used, the change from double to single precision floating-point representation, changes in the update frequency of the lateral boundary conditions, and tiny changes to selected model parameters. While providing very robust results, the methodology also shows a large sensitivity to more significant model changes, making it a good candidate for an automated tool to guarantee model consistency in the development cycle.</p>


2013 ◽  
Vol 26 (1) ◽  
pp. 231-245 ◽  
Author(s):  
Michael Winton ◽  
Alistair Adcroft ◽  
Stephen M. Griffies ◽  
Robert W. Hallberg ◽  
Larry W. Horowitz ◽  
...  

Abstract The influence of alternative ocean and atmosphere subcomponents on climate model simulation of transient sensitivities is examined by comparing three GFDL climate models used for phase 5 of the Coupled Model Intercomparison Project (CMIP5). The base model ESM2M is closely related to GFDL’s CMIP3 climate model version 2.1 (CM2.1), and makes use of a depth coordinate ocean component. The second model, ESM2G, is identical to ESM2M but makes use of an isopycnal coordinate ocean model. The authors compare the impact of this “ocean swap” with an “atmosphere swap” that produces the GFDL Climate Model version 3 (CM3) by replacing the AM2 atmospheric component with AM3 while retaining a depth coordinate ocean model. The atmosphere swap is found to have much larger influence on sensitivities of global surface temperature and Northern Hemisphere sea ice cover. The atmosphere swap also introduces a multidecadal response time scale through its indirect influence on heat uptake. Despite significant differences in their interior ocean mean states, the ESM2M and ESM2G simulations of these metrics of climate change are very similar, except for an enhanced high-latitude salinity response accompanied by temporarily advancing sea ice in ESM2G. In the ESM2G historical simulation this behavior results in the establishment of a strong halocline in the subpolar North Atlantic during the early twentieth century and an associated cooling, which are counter to observations in that region. The Atlantic meridional overturning declines comparably in all three models.


2020 ◽  
Vol 91 (3) ◽  
pp. 1518-1530 ◽  
Author(s):  
Thomas Lecocq ◽  
Fabrice Ardhuin ◽  
Fabienne Collin ◽  
Thierry Camelbeeck

Abstract We report on a pilot demonstration of the usefulness of analog seismograms to improve the database of ocean storms before the 1980s by providing additional data for the quantitative validation of ocean wave modeling, in particular for extreme events. We present a method for automatic digitization of paper seismograms to extract microseismic ground-motion periods and amplitudes. Each minute of the original paper records is scanned and vectorized. The amplitudes are calibrated based on the original metadata taken from official bulletins. The digitized time series is processed to extract power spectral densities, which are compared with modeled microseisms levels computed using a numerical ocean wave model. As a case study, we focus on one month of data recorded at the Royal Observatory of Belgium (ROB) from January to February 1953, around the “Big Flood” event, a tragic storm surge that flooded the lowlands of England, the Netherlands, and Belgium on 1 February 1953. The reconstructed spectrograms for the three components of ground motion show clear storm signatures that we relate to specific sources in the North Atlantic Ocean. However, our models of the Big Flood event based on these data do not result in the expected amplitudes as modeled compared to the observational data when the storm reached its maximum in the southern North Sea. We suggest that the source of microseisms recorded at ROB is related to the primary microseism generated in the North Sea, at periods of 7–8 s. Other discrepancies identified suggest small modifications of the source locations or energy. Reconstructed horizontal and vertical ground motions are coherent. This is a good news for the purpose of present-day analyses of constructing twentieth century ocean-climate models, especially as during much of that time only horizontal seismographs were installed at observatories.


1998 ◽  
Vol 27 ◽  
pp. 565-570 ◽  
Author(s):  
William M. Connolley ◽  
Siobhan P. O'Farrell

We compare observed temperature variations in Antarctica with climate-model runs over the last century. The models used are three coupled global climate models (GCMs) — the UKMO, the CSIRO and the MPI forced by the CO2 increases observed over the last century, and an atmospheric model experiment forced with observed sea-surface temperatures and sea-ice extents over the last century. Despite some regions of agreement, in general the GCM runs appear to be incompatible with each other and with the observations, although the short observational record and high natural variability make verification difficult. One of the best places for a more detailed study is the Antarctic Peninsula where the density of stations is higher and station records are longer than elsewhere in Antarctica. Observations show that this area has seen larger temperature rises than anywhere else in Antarctica. None of the three GCMs simulate such large temperature changes in the Peninsula region, in either climate-change runs radiatively forced by CO2 increases or control runs which assess the level of model variability.


2011 ◽  
Vol 41 (6) ◽  
pp. 1041-1056 ◽  
Author(s):  
Thomas B. Sanford ◽  
James F. Price ◽  
James B. Girton

Abstract Three autonomous profiling Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats were air deployed one day in advance of the passage of Hurricane Frances (2004) as part of the Coupled Boundary Layer Air–Sea Transfer (CBLAST)-High field experiment. The floats were deliberately deployed at locations on the hurricane track, 55 km to the right of the track, and 110 km to the right of the track. These floats provided profile measurements between 30 and 200 m of in situ temperature, salinity, and horizontal velocity every half hour during the hurricane passage and for several weeks afterward. Some aspects of the observed response were similar at the three locations—the dominance of near-inertial horizontal currents and the phase of these currents—whereas other aspects were different. The largest-amplitude inertial currents were observed at the 55-km site, where SST cooled the most, by about 2.2°C, as the surface mixed layer deepened by about 80 m. Based on the time–depth evolution of the Richardson number and comparisons with a numerical ocean model, it is concluded that SST cooled primarily because of shear-induced vertical mixing that served to bring deeper, cooler water into the surface layer. Surface gravity waves, estimated from the observed high-frequency velocity, reached an estimated 12-m significant wave height at the 55-km site. Along the track, there was lesser amplitude inertial motion and SST cooling, only about 1.2°C, though there was greater upwelling, about 25-m amplitude, and inertial pumping, also about 25-m amplitude. Previously reported numerical simulations of the upper-ocean response are in reasonable agreement with these EM-APEX observations provided that a high wind speed–saturated drag coefficient is used to estimate the wind stress. A direct inference of the drag coefficient CD is drawn from the momentum budget. For wind speeds of 32–47 m s−1, CD ~ 1.4 × 10−3.


2020 ◽  
Author(s):  
Samuel Helsen ◽  
Sam Vanden Broucke ◽  
Alexandra Gossart ◽  
Niels Souverijns ◽  
Nicole van Lipzig

<p>The Totten glacier is a highly dynamic outlet glacier, situated in E-Antarctica, that contains a potential sea level rise of about 3.5 meters. During recent years, this area has been influenced by sub-shelf intrusion of warm ocean currents, contributing to higher basal melt rates. Moreover, most of the ice over this area is grounded below sea level, which makes the ice shelf potentially vulnerable to the marine ice sheet instability mechanism. It is expected that, as a result of climate change, the latter mechanisms may contribute to significant ice losses in this region within the next decades, thereby contributing to future sea level rise. Up to now, most studies have been focusing on sub-shelf melt rates and the influence of the ocean, with much less attention for atmospheric processes (often ignored), which also play a key-role in determining the climatic conditions over this region. For example: surface melt is important because it contributes to hydrofracturing, a process that may lead to ice cliff instabilities. Also precipitation is an important atmospheric process, since it determines the input of mass to the ice sheet and contributes directly to the surface mass balance. In order to perform detailed studies on these processes, we need a well-evaluated climate model that represents all these processes well. Recently, the COSMO-CLM<sup>2</sup> (CCLM<sup>2</sup>) model was adapted to the climatological conditions over Antarctica. The model was evaluated by comparing a 30 year Antarctic-wide hindcast run (1986-2016) at 25 km resolution with meteorological observational products (Souverijns et al., 2019). It was shown that the model performance is comparable to other state-of-the-art regional climate models over the Antarctic region. We now applied the CCLM<sup>2</sup> model in a regional configuration over the Totten glacier area (E-Antarctica) at 5 km resolution and evaluated its performance over this region by comparing it to climatological observations from different stations. We show that the performance for temperature in the high resolution run is comparable to the performance of the Antarctic-wide run. Precipitation is, however, overestimated in the high-resolution run, especially over dome structures (Law-Dome). Therefore, we applied an orographic smoothening, which clearly improves the precipitation pattern with respect to observations. Wind speed is overestimated in some places, which is solved by increasing the surface roughness. This research frames in the context of the PARAMOUR project. Within PARAMOUR, CCLM<sup>2 </sup>is currently being coupled to an ocean model (NEMO) and an ice sheet model (f.ETISh/BISICLES) in order to understand decadal predictability over this region.</p>


2015 ◽  
Vol 56 (70) ◽  
pp. 175-183 ◽  
Author(s):  
Andrew Zammit-Mangion ◽  
Jonathan L. Bamber ◽  
Nana W. Schoen ◽  
Jonathan C. Rougier

AbstractCombinations of various numerical models and datasets with diverse observation characteristics have been used to assess the mass evolution of ice sheets. As a consequence, a wide range of estimates have been produced using markedly different methodologies, data, approximation methods and model assumptions. Current attempts to reconcile these estimates using simple combination methods are unsatisfactory, as common sources of errors across different methodologies may not be accurately quantified (e.g. systematic biases in models). Here we provide a general approach which deals with this issue by considering all data sources simultaneously, and, crucially, by reducing the dependence on numerical models. The methodology is based on exploiting the different space–time characteristics of the relevant ice-sheet processes, and using statistical smoothing methods to establish the causes of the observed change. In omitting direct dependence on numerical models, the methodology provides a novel means for assessing glacio-isostatic adjustment and climate models alike, using remote-sensing datasets. This is particularly advantageous in Antarctica, where in situ measurements are difficult to obtain. We illustrate the methodology by using it to infer Antarctica’s mass trend from 2003 to 2009 and produce surface mass-balance anomaly estimates to validate the RACMO2.1 regional climate model.


Sign in / Sign up

Export Citation Format

Share Document