Compound impact of rainfall, tidal level and storm surge on flood risk from tropical cyclones in the coastal area of shanghai

Author(s):  
Hanqing Xu

<p>Catastrophic flooding resulting from extreme tropical cyclones has occurred more frequently and drawn great attention in recent years in China. Coastal cities are particularly vulnerable to flood under multivariable conditions, such as heavy precipitation, high sea levels, and storms surge. In coastal areas, floods caused by rainstorms and storm surges have been one of the most costly and devastating natural hazards in coastal regions. Extreme precipitation and storm tide are both inducing factors of flooding and therefore their joint probability would be critical to determine the flooding risk. Usually, extreme events such as tidal level, storm surges, precipitation occur jointly, leading to compound flood events with significantly higher hazards compared to the sum of the single extreme events. The purpose of this study is to improve our understanding of multiple drivers to compound flooding in shanghai. The Wind Enhance Scheme (WES) model characterized by Holland model is devised to generate wind "spiderweb" both for historical (1949-2018) and future (2031-2060, 2069-2098) tropical cyclones. The tidal level and storm surge model based on Delft3D-FLOW is employed with an unstructured grid to simulate the change of water level. For precipitation, maximum value between tropical cyclone events is selected. Following this, multivariate Copula model would be employed to compare the change of joint probability between tidal level, storm surge and heavy precipitation under climate change, taking into account sea-level rise and land subsidence. Finally, the impact of tropical cyclone on the joint risk of tidal, storm surge and heavy precipitation is investigated. </p>


2013 ◽  
Vol 17 (2) ◽  
pp. 679-689 ◽  
Author(s):  
J. J. Lian ◽  
K. Xu ◽  
C. Ma

Abstract. Coastal cities are particularly vulnerable to flood under multivariable conditions, such as heavy precipitation, high sea levels, and storms. The combined effect of multiple sources and the joint probability of extremes should be considered to assess and manage flood risk better. This paper aims to study the combined effect of rainfall and the tidal level of the receiving water body on flood probability and severity in Fuzhou City, which has a complex river network. Flood severity under a range of precipitation intensities, with return periods (RPs) of 5 yr to 100 yr, and tidal levels was assessed through a hydrodynamic model verified by data observed during Typhoon Longwang in 2005. According to the percentages of the river network where flooding occurred, the threshold conditions for flood severity were estimated in two scenarios: with and without working pumps. In Fuzhou City, working pumps efficiently reduce flood risk from precipitation within a 20-yr RP. However, the pumps may not work efficiently when rainfall exceeds a 100-yr RP because of the limited conveyance capacity of the river network. Joint risk probability was estimated through the optimal copula. The joint probability of rainfall and tidal level both exceeding their threshold values is very low, and the greatest threat in Fuzhou comes from heavy rainfall. However, the tidal level poses an extra risk of flood. Given that this extra risk is ignored in the design of flood defense in Fuzhou, flood frequency and severity may be higher than understood during design.



2019 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Rachna Sok

Tropical cyclones are the most serious meteorological phenomena that hit Bima city in December 2016. The strong winds and heavy precipitation associated with a typhoon significantly affect the weather in this city. The impact of a tropical cyclone on precipitation variability in Bima is studied using rainfall data for analyzing hourly rainfall distribution pattern during the event. Depend on the geographic situation and climate characteristic, the hourly rainfall distribution pattern of one area is different to others area. The research aims to analyze hourly rainfall distribution pattern in the form of the rainfall intensity distribution. This research is conducted using one automatic rainfall gauge in Bima city, West Nusa Tenggara province that obtained from Regional Disaster Management Agency (BPBD). The results showed that two events of rainfall were recorded. The first rainfall event was on 20th to 21st December 2016 with a total rainfall 191.4 mm. The second rainfall event occurred on 22nd to 23rd December 2016 with a total rainfall 126.2 mm. The rainfall distribution pattern has rainfall intensity peak at 45% of duration with cumulative rainfall reached 70%. It was found there is no common pattern of temporal rainfall distribution for rainfall induced by tropical cyclones.



PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5786 ◽  
Author(s):  
Lachlan J. McLean ◽  
Steve George ◽  
Daniel Ierodiaconou ◽  
Roger J. Kirkwood ◽  
John P.Y. Arnould

Global warming is leading to many unprecedented changes in the ocean-climate system. Sea levels are rising at an increasing rate and are amplifying the impact of storm surges along coastlines. As variability in the timing and strength of storm surges has been shown to affect pup mortality in the Australian fur seal (Arctocephalus pusillus doriferus), there is a need to identify the potential impacts of increased sea level and storm surges on the breeding areas of this important marine predator in Bass Strait, south-eastern Australia. Using high-resolution aerial photography and topographic data, the present study assessed the impacts of future inundation levels on both current and potential breeding habitats at each colony. Inundation from storm surges, based on a predicted rise in sea level, was modeled at each colony from 2012 to 2100. As sea level increases, progressively less severe storm surge conditions will be required to exceed current inundation levels and, thus, have the potential for greater impacts on pup mortality at Australian fur seal colonies. The results of the present study indicate that by 2100, a 1-in-10 year storm will inundate more habitat on average than a present-day 1-in-100 year storm. The study highlights the site-specific nature of storm surge impacts, and in particular the importance of local colony topography and surrounding bathymetry with small, low-lying colonies impacted the most. An increased severity of storm surges will result in either an increase in pup mortality rates associated with storm surges, or the dispersal of individuals to higher ground and/or new colonies.



Author(s):  
Masaya Toyoda ◽  
Jun Yoshino ◽  
Tomonao Kobayashi

The recent progress of the global warming raise concerns the future changes of tropical cyclones (i.e. hurricane, typhoon, and cyclone) and their associated coastal disasters. It is thought that the increases of both the sea surface temperature and ocean heat contents by the global warming could increase the intensity of future tropical cyclones. As a method of quantitative assessment for the impact of global warming on tropical cyclones and their storm surges, “pseudo-global warming downscaling” is generally adopted using a regional climate model and a storm surge model (Takayabu et al., 2015). Estimating the differences of experiments between present and future climate, we can quantify the future changes of typhoon intensity and storm surge by the global warming. Using the high-resolution typhoon model, we carry out a present climate experiment and pseudo-global warming experiments on typhoon intensity and its storm surge of Typhoon Sanba (2012) in this study. Sanba went northward on the west coast of Kyushu Island and caused a storm surge in Ariake Sea, Japan. Sanba had a minimum central pressure of 900 hPa and a maximum wind speed of 55 m/s. The observed maximum sea level anomaly was 104 cm at Oura, Saga Prefecture. To evaluate the impacts of global warming differences (GWDs) on typhoon intensity and storm surge, sensitivity experiments on different months (August, September, and October) in future typhoon season are also made.



Author(s):  
Rikito Hisamatsu ◽  
Rikito Hisamatsu ◽  
Kei Horie ◽  
Kei Horie

Container yards tend to be located along waterfronts that are exposed to high risk of storm surges. However, risk assessment tools such as vulnerability functions and risk maps for containers have not been sufficiently developed. In addition, damage due to storm surges is expected to increase owing to global warming. This paper aims to assess storm surge impact due to global warming for containers located at three major bays in Japan. First, we developed vulnerability functions for containers against storm surges using an engineering approach. Second, we simulated storm surges at three major bays using the SuWAT model and taking global warming into account. Finally, we developed storm surge risk maps for containers based on current and future situations using the vulnerability function and simulated inundation depth. As a result, we revealed the impact of global warming on storm surge risks for containers quantitatively.



2007 ◽  
Vol 135 (4) ◽  
pp. 1195-1207 ◽  
Author(s):  
Timothy F. Hogan ◽  
Randal L. Pauley

Abstract The influence of convective momentum transport (CMT) on tropical cyclone (TC) track forecasts is examined in the Navy Operational Global Atmospheric Prediction System (NOGAPS) with the Emanuel cumulus parameterization. Data assimilation and medium-range forecast experiments show that for 35 tropical cyclones during August and September 2004 the inclusion of CMT in the cumulus parameterization significantly improves the TC track forecasts. The tests show that the track forecasts are very sensitive to the magnitude of the Emanuel parameterization’s convective momentum transport parameter, which controls the CMT tendency returned by the parameterization. While the overall effect of this formulation of CMT in NOGAPS data assimilation/medium-range forecasts results in the surface pressure of tropical cyclones being less intense (and more consistent with the analysis), the parameterization is not equivalent to a simple diffusion of winds in the presence of convection. This is demonstrated by two data assimilation/medium-range forecast tests in which a vertical diffusion algorithm replaces the CMT. Two additional data assimilation/medium-range forecast experiments were conducted to test whether the skill increase primarily comes from the CMT in the immediate vicinity of the tropical cyclones. The results show that the inclusion of the CMT calculation in the vicinity of the TC makes the largest contribution to the increase in forecast skill, but the general contribution of CMT away from the TC also plays an important role.



2017 ◽  
Vol 114 (45) ◽  
pp. 11861-11866 ◽  
Author(s):  
Andra J. Garner ◽  
Michael E. Mann ◽  
Kerry A. Emanuel ◽  
Robert E. Kopp ◽  
Ning Lin ◽  
...  

The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970–2005 to 4.0–5.1 m above mean tidal level by 2080–2100 and ranges from 5.0–15.4 m above mean tidal level by 2280–2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970–2005 and further decreases to ∼5 y by 2030–2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280–2300 for scenarios that include Antarctica’s potential partial collapse.



Author(s):  
Yako Harada ◽  
Yukihisa Matsumoto ◽  
Kazuho Morishita ◽  
Nobuyuki Oonishi ◽  
Kazuyoshi Kihara ◽  
...  

The vertical telescopic breakwater(VTB), which is a new breakwater that permits the navigation of ships, remain at the bottom of the sea during calm and rise to the surface during tsunamis or storm surges. Kawai et al. (2017) and Arikawa et al. (2019) found that it is effective not only for swell waves, but also for long-period waves simulating tsunamis and storm surges by previous experiments and numerical analyses. However, there have been few studies on the performance of VTB by numerical calculations in actual ports using actual typhoons. In addition, sea levels and changes in characteristics of typhoon due to climate change are predicted to occur; hence, we are concerned about the damage in all quarters caused by storm surge inundation, especially at Tokyo. Therefore, in this study, we used hypothetical typhoons under worst-case scenarios and quantitatively evaluated the protection performance of VTB against hypothetical typhoons with different aperture rates of VTB in Tokyo Bay by the numerical simulation.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/qof5ixKqIiA



2019 ◽  
Vol 54 (1-2) ◽  
pp. 1007-1021 ◽  
Author(s):  
Job C. M. Dullaart ◽  
Sanne Muis ◽  
Nadia Bloemendaal ◽  
Jeroen C. J. H. Aerts

Abstract This study examines the implications of recent advances in global climate modelling for simulating storm surges. Following the ERA-Interim (0.75° × 0.75°) global climate reanalysis, in 2018 the European Centre for Medium-range Weather Forecasts released its successor, the ERA5 (0.25° × 0.25°) reanalysis. Using the Global Tide and Surge Model, we analyse eight historical storm surge events driven by tropical—and extra-tropical cyclones. For these events we extract wind fields from the two reanalysis datasets and compare these against satellite-based wind field observations from the Advanced SCATterometer. The root mean squared errors in tropical cyclone wind speed reduce by 58% in ERA5, compared to ERA-Interim, indicating that the mean sea-level pressure and corresponding strong 10-m winds in tropical cyclones greatly improved from ERA-Interim to ERA5. For four of the eight historical events we validate the modelled storm surge heights with tide gauge observations. For Hurricane Irma, the modelled surge height increases from 0.88 m with ERA-Interim to 2.68 m with ERA5, compared to an observed surge height of 2.64 m. We also examine how future advances in climate modelling can potentially further improve global storm surge modelling by comparing the results for ERA-Interim and ERA5 against the operational Integrated Forecasting System (0.125° × 0.125°). We find that a further increase in model resolution results in a better representation of the wind fields and associated storm surges, especially for small size tropical cyclones. Overall, our results show that recent advances in global climate modelling have the potential to increase the accuracy of early-warning systems and coastal flood hazard assessments at the global scale.



2011 ◽  
Vol 94-96 ◽  
pp. 810-814
Author(s):  
Jin Shan Zhang ◽  
Wei Sheng Zhang ◽  
Chen Cheng ◽  
Lin Yun Sun

Bohai Bay is an semi-closed bay, the storm surge disaster is very serious in past. Now more and more large ocean engineering are built here, To study changes of storm surge induced by the construction of large-scale coastal engineering in Bohai Bay in present, 2D numerical storm surge model is established with large - medium - small model nested approach. The three most typical storms surges: 9216, 9711 and by cold wave in October 2003 are simulated in the condition of before and after implementation of planning projects in Bohai Bay. Changes of storm surge water level due to implementation of artificial projects are analysis in this paper.



Sign in / Sign up

Export Citation Format

Share Document