Temporal variation of fault slip rate in southern Taiwan by integrating GPS and InSAR observations

Author(s):  
Li-Yang Hsiao ◽  
Wu-Lung Chang

<p>Due to the rapid convergence of Philippine Sea Plate toward the continental margin of Eurasian Plate, the southern Taiwan has a high number of 8 active faults published by the Taiwan Central Geological Survey. We inverted the Global Positioning System (GPS) velocity measurements to investigate the slip rates on these faults and how these values could change with time, especially before and after large seismic events. In this study we employed TDEFNODE to first evaluate two fault-slip models before and after the 2016 Mw 6.4 Meinong earthquake within the periods of 2002 to 2016 (model 1) and 2016 to 2018 (model 2). Our results from these two models show that some long-term average fault slip rates were changed with time, such as the Zuozhen, Chishan and Hengchun faults that have values 30.2, 27.0 and 29.7 mm/yr in 2002-2016 and 15.2, 6.6 and 14.2 mm/yr in 2016-2018, respectively. In addition, we focused on the Mw 7.0 and Mw 6.9 2006 Hengchun doublet earthquakes by integrating the Permanent Scattered Interferometric Synthetic Aperture Radar (PS-InSAR) data collected by ALOS from 2007 to 2011 with the GPS velocities for a joint inversion for fault slip model (model 3). The results show that the average long-term slip rates of the Chishan and Hengchun faults are 12.5 and 16.8 mm/yr, respectively, which are significantly lower than the rates of 2002-2016 (model 1). More fault models with different time spans are on the way to affirm these temporal rate changes and explore their implications on earthquake hazard analysis.</p>

Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 139
Author(s):  
Giancarlo Molli ◽  
Isabelle Manighetti ◽  
Rick Bennett ◽  
Jacques Malavieille ◽  
Enrico Serpelloni ◽  
...  

Based on the review of the available stratigraphic, tectonic, morphological, geodetic, and seismological data, along with new structural observations, we present a reappraisal of the potential seismogenic faults and fault systems in the inner northwest Apennines, Italy, which was the site, one century ago, of the devastating Mw ~6.5, 1920 Fivizzano earthquake. Our updated fault catalog provides the fault locations, as well as the description of their architecture, large-scale segmentation, cumulative displacements, evidence for recent to present activity, and long-term slip rates. Our work documents that a dense network of active faults, and thus potential earthquake fault sources, exists in the region. We discuss the seismogenic potential of these faults, and propose a general tectonic scenario that might account for their development.


Geosphere ◽  
2020 ◽  
Author(s):  
Katherine A. Guns ◽  
Richard A Bennett ◽  
Joshua C. Spinler ◽  
Sally F. McGill

Assessing fault-slip rates in diffuse plate boundary systems such as the San Andreas fault in southern California is critical both to characterize seis­mic hazards and to understand how different fault strands work together to accommodate plate boundary motion. In places such as San Gorgonio Pass, the geometric complexity of numerous fault strands interacting in a small area adds an extra obstacle to understanding the rupture potential and behavior of each individual fault. To better understand partitioning of fault-slip rates in this region, we build a new set of elastic fault-block models that test 16 different model fault geometries for the area. These models build on previ­ous studies by incorporating updated campaign GPS measurements from the San Bernardino Mountains and Eastern Transverse Ranges into a newly calculated GPS velocity field that has been removed of long- and short-term postseismic displacements from 12 past large-magnitude earthquakes to estimate model fault-slip rates. Using this postseismic-reduced GPS velocity field produces a best- fitting model geometry that resolves the long-standing geologic-geodetic slip-rate discrepancy in the Eastern California shear zone when off-fault deformation is taken into account, yielding a summed slip rate of 7.2 ± 2.8 mm/yr. Our models indicate that two active strands of the San Andreas system in San Gorgonio Pass are needed to produce sufficiently low geodetic dextral slip rates to match geologic observations. Lastly, results suggest that postseismic deformation may have more of a role to play in affecting the loading of faults in southern California than previously thought.


2006 ◽  
Vol 20 (03) ◽  
pp. 261-276 ◽  
Author(s):  
RALF HETZEL ◽  
ANDREA HAMPEL

Seismic hazard evaluations on major faults in Earth's crust are based on their slip histories, which reflect the frequency of earthquakes that ruptured a fault in the past. On a 100 000-year timescale, the slip rate of a fault can be determined by dating geomorphic surfaces that are offset by a fault. Application of this method to alluvial fan surfaces and river terraces offset by thrust faults in Tibet yields long-term slip rates of less than 1mm/a. Slip rates on a 10 000-year timescale are derived from paleoseismologic data and document that faults experience considerable slip rate variations on timescales of 100 to 1000 years. In particular, slip rates are often considerable higher in the present interglacial, the Holocene, than during the last glacial period, the Late Pleistocene. The causes of this behavior have remained enigmatic but their assessment is essential for an accurate evaluation of a fault's past and future seismicity. Numerical experiments show that the retreat of lakes and glaciers at the end of the last glacial period can cause an increase in the Holocene slip rate of a fault. Such a correlation between enhanced seismicity and climate-driven mass fluctuations on Earth's surface is best documented for the Wasatch Fault, Utah.


Tectonics ◽  
2015 ◽  
Vol 34 (10) ◽  
pp. 2190-2220 ◽  
Author(s):  
A. Khodaverdian ◽  
H. Zafarani ◽  
M. Rahimian

2020 ◽  
Author(s):  
Jack N. Williams ◽  
Hassan Mdala ◽  
Åke Fagereng ◽  
Luke N. J. Wedmore ◽  
Juliet Biggs ◽  
...  

Abstract. Seismic hazard is frequently characterised using instrumental seismic records. However, in regions where the instrumental record is short relative to earthquake repeat times, extrapolating it to estimate seismic hazard can misrepresent the probable location, magnitude, and frequency of future large earthquakes. Although paleoseismology can address this challenge, this approach requires certain geomorphic settings and carries large inherent uncertainties. Here, we outline how fault slip rates and recurrence intervals can be estimated through an approach that combines fault geometry, earthquake-scaling relationships, geodetically derived regional strain rates, and geological constraints of regional strain distribution. We then apply this approach to the southern Malawi Rift where, although no on-fault slip rate measurements exist, there are theoretical and observational constraints on how strain is distributed between border and intrabasinal faults. This has led to the development of the South Malawi Active Fault Database (SMAFD), the first database of its kind in the East African Rift System (EARS) and designed so that the outputs can be easily incorporated into Probabilistic Seismic Hazard Analysis. We estimate earthquake magnitudes of MW 5.4–7.2 for individual fault sections in the SMAFD, and MW 6.0–7.8 for whole fault ruptures. These potentially high magnitudes for continental normal faults reflect southern Malawi's 11–140 km long faults and thick (30–35 km) seismogenic crust. However, low slip rates (intermediate estimates 0.05–0.8 mm/yr) imply long recurrence intervals between events: 102–105 years for border faults and 103–106 years for intrabasinal faults. Sensitivity analysis indicates that the large range of these estimates can be reduced most significantly from an improved understanding of the rate and partitioning of rift-extension in southern Malawi, earthquake scaling relationships, and earthquake rupture scenarios. Hence these are critical areas for future research. The SMAFD provides a framework for using geological and geodetic information to characterize seismic hazard in low strain rate settings with few on-fault slip rate measurements, and could be adapted for use elsewhere in the EARS or globally.


Geosphere ◽  
2021 ◽  
Author(s):  
Robert C. Witter ◽  
Adrian M. Bender ◽  
Katherine M. Scharer ◽  
Christopher B. DuRoss ◽  
Peter J. Haeussler ◽  
...  

Active traces of the southern Fairweather fault were revealed by light detection and ranging (lidar) and show evidence for transpressional deformation between North America and the Yakutat block in southeast Alaska. We map the Holocene geomorphic expression of tectonic deformation along the southern 30 km of the Fairweather fault, which ruptured in the 1958 moment magnitude 7.8 earthquake. Digital maps of surficial geology, geomorphology, and active faults illustrate both strike-slip and dip-slip deformation styles within a 10°–30° double restraining bend where the southern Fairweather fault steps offshore to the Queen Charlotte fault. We measure offset landforms along the fault and calibrate legacy 14C data to reassess the rate of Holocene strike-slip motion (≥49 mm/yr), which corroborates published estimates that place most of the plate boundary motion on the Fairweather fault. Our slip-rate estimates allow a component of oblique-reverse motion to be accommodated by contractional structures west of the Fairweather fault consistent with geodetic block models. Stratigraphic and structural relations in hand-dug excavations across two active fault strands provide an incomplete paleoseismic record including evidence for up to six surface ruptures in the past 5600 years, and at least two to four events in the past 810 years. The incomplete record suggests an earthquake recurrence interval of ≥270 years—much longer than intervals <100 years implied by published slip rates and expected earthquake displacements. Our paleoseismic observations and map of active traces of the southern Fairweather fault illustrate the complexity of transpressional deformation and seismic potential along one of Earth’s fastest strike-slip plate boundaries.


2019 ◽  
Vol 94 ◽  
pp. 04006
Author(s):  
Henri Kuncoro ◽  
Irwan Meilano ◽  
Susilo Susilo

The Southeast Asia region is mostly surrounded by active subduction zones in which the Australian plate, the Indian plate, and the Philippine Sea plate submerges beneath the continental plates and blocks. The Sunda block covers the large part of the Southeast Asia region, which comprises of Indochina, the South China Sea, the northeastern part of Sumatra, Borneo, the northern part of Java, and the shallow seas in between. We collect the GPS data in the whole Southeast Asia region for the period from 1994 to 2016, and process the original carrier phase data of GPS using GAMIT/GLOBK 10.6 to obtain the velocity field in the International Terrestrial Reference Frame, ITRF2008. The velocity field thus obtained is utilized to update the Euler rotation parameters of the Sunda block in ITRF2008, and model the long-term slip rates between the adjacent plate and blocks. In this study, we model the Sunda block and the Sumatra block together with the Australian plate by using TDEFNODE. The estimated Euler pole parameters of the Sumatra and Sunda blocks are estimated as their locations at (37.4°S, 106.8°E) and (46.2°N, 89.4°W), respectively, and their angular velocities of 0.371°/Myr clockwise, and 0.327°/Myr counter clockwise, respectively. These parameters result in the slip rate of the Sumatra fault with magnitude of ~9 mm/yr.


2018 ◽  
Vol 18 (11) ◽  
pp. 3121-3135
Author(s):  
Avith Mendoza-Ponce ◽  
Angel Figueroa-Soto ◽  
Diana Soria-Caballero ◽  
Víctor Hugo Garduño-Monroy

Abstract. The Pátzcuaro–Acambay fault system (PAFS), located in the central part of the Trans-Mexican Volcanic Belt (TMVB), is delimited by an active transtensive deformation area associated with the oblique subduction zone between the Cocos and North American plates, with a convergence speed of 55 mm yr−1 at the latitude of the state of Michoacán, Mexico. Part of the oblique convergence is transferred to this fault system, where the slip rates range from 0.009 to 2.78 mm yr−1. This has caused historic earthquakes in Central Mexico, such as the Acambay quake (Ms=6.9) on 19 November 1912 with surface rupture, and another in Maravatío in 1979 with Ms=5.6. Also, paleoseismic analyses are showing Quaternary movements in some faults, with moderate to large magnitudes. Notably, this zone is seismically active, but lacks a dense local seismic network, and more importantly, its neotectonic movements have received very little attention. The present research encompasses three investigations carried out in the PAFS. First, the estimation of the maximum possible earthquake magnitudes, based on 316 fault lengths mapped on a 15 m digital elevation model, by means of three empirical relationships. In addition, the Hurst exponent Hw and its persistence, estimated for magnitudes Mw (spatial domain) and for 32 slip-rate data (time domain) by the wavelet variance analysis. Finally, the validity of the intrinsic definition of active fault proposed here. The average results for the estimation of the maximum and minimum magnitudes expected for this fault population are 5.5≤Mw≤7. Also, supported by the results of H at the spatial domain, this paper strongly suggests that the PAFS is classified in three different zones (western PAFS, central PAFS, and eastern PAFS) in terms of their roughness (Hw=0.7,Hw=0.5,Hw=0.8 respectively), showing different dynamics in seismotectonic activity and; the time domain, with a strong persistence Hw=0.949, suggests that the periodicities of slip rates are close in time (process with memory). The fractal capacity dimension (Db) is also estimated for the slip-rate series using the box-counting method. Inverse correlation between Db and low slip-rate concentration was observed. The resulting Db=1.86 is related to a lesser concentration of low slip-rates in the PAFS, suggesting that larger faults accommodate the strain more efficiently (length ≥3 km). Thus, in terms of fractal analysis, we can conclude that these 316 faults are seismically active, because they fulfill the intrinsic definition of active faults for the PAFS.


2020 ◽  
Author(s):  
Daniel Melnick ◽  
Valentina Maldonado ◽  
Martin Contreras ◽  
Julius Jara-Muñoz ◽  
Joaquín Cortés-Aranda ◽  
...  

<p>Most of the seismic hazard along subduction zones is posed by great tsunamigenic earthquakes associated with the interplate megathrust fault. However, crustal faults are ubiquitous along overriding continental plates, some of which have been triggered during recent megathrust earthquakes. In Chile, the 2010 Maule earthquake (M8.8) triggered a shallow M7 earthquake on the Pichilemu fault, which had not been mapped and was unknown. In fact, M~7 earthquakes have recently occurred along unknown faults in California and New Zealand, emphasizing the need for better and more detailed mapping initiatives. A first step towards a synoptic assessment of seismic hazards posed by continental faults at the national level is mapping at a homogeneous scale to allow for a systematic comparison of faults and fault systems. Here, we present the first map of active and potentially-active faults in Chile at 1:25,000 scale, which includes published studies and newly-identified faults. All the published faults have been re-mapped using LiDAR and TanDEM-X topography, where available. Using different scaling relations, we estimate the seismic potential of all crustal faults in Chile. For specific faults where we have conducted paleoseismic and tectonic geomorphic field studies (e.g., Liquiñe-Ofqui, El Yolki, Mesamavida, and Pichilemu faults) we provide new estimates of slip rate, recurrence interval, and deformation style. We propose a segmentation model of continental faults systems in Chile, which are associated with distinct morphotectonic units and have predominant kinematics and relatively uniform slip rates. Using stress transfer models, we explore the potential feedbacks between upper-plate deformation and the megathrust seismic cycle.</p>


Sign in / Sign up

Export Citation Format

Share Document