Improvement of soil characteristics making use of logical, good agricultural practices: purpose and results obtained in the LIFE AMDRYC4 Project

Author(s):  
Maria Jose Martinez-Sanchez ◽  
Salvadora Martinez-Lopez ◽  
Lucia Belen Martinez-Martinez ◽  
Maria Ortega ◽  
Manuel Hernandez-Cordoba ◽  
...  

<p>The modification of environmental conditions and the subsequent evolution of the ecosystems results in soil degradation or desertification, which is also caused by the abandonment of the countryside, poor agricultural practices and the socio-economic dynamics that nowadays presents the rural environment. Land degradation leads to loss of fertility, nutrients and vegetation cover and increased erosion, pollution, salinization and alkalinization. The effects derived from this situation aggravate, in turn, climate change, in a strongly intertwined dynamics that feeds back.</p><p>Degraded soils are recoverable through various strategies, among them good agricultural practices being especially relevant.  In this paper, the degree of desertification of several plots of soil that have undergone treatments for the incorporation of organic matter (sewage sludge, manure from different animals, composted plant remains) and their untreated counterparts (blank) is evaluated. To this end, desertification indicators (salinization, organic matter, phosphorus content) included in the LIFE AMDRYC4 Project have been used to monitor soil neutrality, as a measure of the global desertification suffered by a plot.</p><p>The results obtained clearly show an improvement in the soil characteristics following the application of the mentioned strategy for soil treatment. It is therefore concluded that soil degradation is mitigated by good agricultural practices, which leads to a decrease in erosion and salinization and an increase in organic matter, nutrient content, plant cover and the ability to sequester dioxide carbon.  Soils are not affected by polluting processes both in terms of potentially toxic elements and other emerging pollutants. The experimental data obtained indicate that soils in this way remediated can be used to reduce the concentration of greenhouse gases in the atmosphere and represent a good tool to fight against climate change.</p><p> </p>

2020 ◽  
Vol 150 ◽  
pp. 03010
Author(s):  
Hassnae Maher ◽  
Rachid Moussadek ◽  
Abdelmjid Zouahri ◽  
Ahmed Douaik ◽  
Houria Dakak ◽  
...  

In Morocco, agriculture is an important sector of the economy, accounting for 15 to 20% of Gross Domestic Product. However, it has faced several challenges: intensive tillage of land that has accelerated water erosion, seriously threatening water and soil potential, low plant cover density and misuse of traditional agricultural practices, causing a decrease in organic matter levels and destroying aggregate stability. Climate change is making water and soil management in agriculture more and more complicated. The major challenge for Moroccan agriculture is to increase agricultural production while preserving natural resources. The objective of our study is to evaluate the effect of no tillage (NT) on the physico- chemical properties of soil in the El Koudia experimental station, Rabat, Morocco. The crop is durum wheat, Arrehane variety. Soil samples are pre-dried, ground and screened to 0.2mm for organic matter (OM) analysis and 2mm for the remainder of the analyses. Plugs, canned, are then sintered, screened and dried for structural stability tests. The results show that no tillage (NT) favours the accumulation of surface OM, particularly at the 0-5cm horizon unlike conventional tillage (CT). The NT promotes structural stability, with a mean weight diameter (MWD) = 0.94mm for the NT compared to 0.83mm for the CT. These results show that soils ploughed in CT are more exposed to erosion degradation than soils not ploughed (NT). In addition, NT preserves soil moisture and promotes additional water retention of 5 to 10%.


2021 ◽  
Author(s):  
Carla S. S. Ferreira ◽  
Samaneh Seifollahi-Aghmiuni ◽  
Georgia Destouni ◽  
Marijana Solomun ◽  
Navid Ghajarnia ◽  
...  

<p>Soil supports life on Earth and provides several goods and services of essence for human wellbeing. Over the last century, however, intensified human activities and unsustainable management practices, along with ongoing climate change, have been degrading soils’ natural capital, pushing it towards possible critical limits for its ability to provide essential ecosystem services. Soil degradation is characterized by negative changes in soil health status that may lead to partial or total loss of productivity and overall capacity to support human societies, e.g., against increasing climate risks. Such degradation leads to environmental, social and economic losses, which may in turn trigger land abandonment and desertification. In particular, the Mediterranean region has been identified as one of the most vulnerable and severely affected European regions by soil degradation, where the actual extent and context of the problem is not yet well understood. This study provides an overview of current knowledge about the status of soil degradation and its main drivers and processes in the European Mediterranean region, based on comprehensive literature review. In the Mediterranean region, 34% of the land area is subject to ‘very high sensitivity’ or ‘high sensitivity’ to desertification, and risk of desertification applies to over more than 65% of the territory of some countries, such as Spain and Cyprus (IPCC, 2019). The major degradation processes are: (i) soil erosion, due to very high erosion rates (>2 t/ha); (ii) loss of soil organic matter, due to high mineralization rates while the region is already characterized by low or very low soil organic matter (<2%); and (iii) soil and water salinisation, due to groundwater abstraction and sea water intrusion. However, additional physical, chemical and biological degradation processes, such as soil sealing and compaction, contamination, and loss of biodiversity, are also of great concern. Some of the degradation processes, such as soil erosion, have been extensively investigated and their spatial extent is relatively well described. Other processes, however, such as soil biodiversity, are poorly investigated and have limited data availability. In general, a lack of systematic inventories of soil degradation status limits the overall knowledge base and impairs understanding of the spatial and temporal dimensions of the problem. In terms of drivers, Mediterranean soil degradation has mainly been driven by increasing population, particularly in coastal areas, and its concentration in urban areas (and consequent abandonment of rural areas), as well as by land-use changes and intensification of socio-economic activities (e.g. agriculture and tourism). Additionally, climate change, with increasing extent and severity of extreme events (droughts, floods, wildfires), may also be a key degradation driver in this region. Improved information on soil degradation status (including spatio-temporal extent and severity) and enhanced knowledge of degradation drivers, processes and socio-economic, ecological, and biodiversity impacts are needed to better support regional soil management, policy, and decision making. Science and evidence based improvements of soil resource governance and management can enhance soil resilience to regional and global changes, and support the region to achieve related Sustainable Development Goals and the Land Degradation Neutrality targets.</p>


Author(s):  
Stanislav Hejduk

Grasslands fertilizing is used for increasing of forage yields and quality and simultaneously for soil fertility maintenance. The aim of this study was to evaluate the effect of mineral fertilizing on basic agrichemical soil characteristics (pH, available nutrients) and soil organic matter at grazing exploitation of grasslands. 60 kg N.ha−1 was applied in the year of experiment establishment and 90 kg N, 30 kg P a 90 kg K ha−1 in each of following four years. Significantly higher pH (+0.17), available P (+48.5%), K (+15.4%) and organic C (+8.8%) content was found at fertilized treatment. pH value varied significantly during experiment period (range 0.6) and correlated inversely with proportion of white clover in first cut (r = −0.499). Although available K in soil was only on satisfactory level (less than good), K concentration in the forage was even from unfertilized plots higher than physiological requirement of plants. Available nutrient content constitutes only small proportion of total nutrient content: 5.1% at P, 2.1% at K, 12.0% at Mg and 39.0% at Ca.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1553
Author(s):  
Cornelia Rumpel ◽  
Abad Chabbi

This Special Issue contains articles presenting advances in soil organic carbon (SOC) sequestration practices, considering their benefits, trade-offs and monitoring. The studies deal with (1) agricultural practices and climate change, (2) the effect of organic matter amendments, and (3) the development of monitoring, reporting and verification (MRV) strategies. It is concluded that region-specific approaches are required for the implementation and monitoring of SOC sequestering practices.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 385
Author(s):  
Malgorzata Kacprzak ◽  
Iwona Kupich ◽  
Anna Jasinska ◽  
Krzysztof Fijalkowski

The area of degraded sites in the world is constantly expanding and has been a serious environmental problem for years. Such terrains are not only polluted, but also due to erosion, devoid of plant cover and organic matter. The degradation trends can be reversed by supporting remediation/reclamation processes. One of the possibilities is the introduction of biodegradable waste/biowaste substrates into the soil. The additives can be the waste itself or preformed substrates, such composts, mineral-organic fertilizers or biochar. In EU countries average value of compost used for land restoration and landfill cover was equal 4.9%. The transformation of waste in valuable products require the fulfillment of a number of conditions (waste quality, process conditions, law, local circumstances). Application on degraded land surface bio-based waste substrates has several advantages: increase soil organic matter (SOM) and nutrient content, biodiversity and activity of microbial soil communities and change of several others physical and chemical factors including degradation/immobilization of contaminants. The additives improve the water ratio and availability to plants and restore aboveground ecosystem. Due to organic additives degraded terrains are able to sequestrate carbon and climate mitigate. However, we identified some challenges. The application of waste to soil must comply with the legal requirements and meet the end of use criteria. Moreover, shorter or long-term use of bio-waste based substrate lead to even greater soil chemical or microbial contamination. Among pollutants, “emerging contaminants” appear more frequently, such microplastics, nanoparticles or active compounds of pharmaceuticals. That is why a holistic approach is necessary for use the bio-waste based substrate for rehabilitation of soil degraded ecosystems.


The work focused on assessing an overview of the agricultural economy in terms of the sustainability of agricultural systems adapted to climatic disturbances that allow ecological agricultural practices. Changing paradigms in agriculture with climate change involves adapting agricultural systems to the risks of using fertilizers in soil treatment, the interdependence of plant-soil water in agricultural practice, and the reduction of nitrate waste are also highlighted in the paper. Expectations regarding the reduction of greenhouse gases in the agricultural system have a long concern, what we propose in this study is that, at the same time, local traditions, the balance of the biosphere must be maintained with local nutrient needs based on climatic and soil characteristics. In the research, we analyzed some of the vulnerabilities, in the sense that, the agricultural practice and tradition must have a denominator in terms of fertilizers considering the risks of pollution or waste.


2020 ◽  
Author(s):  
Julia Urquijo Reguera ◽  
José Luis Postigo ◽  
Ivanka Puigdueta ◽  
Laura Juarez ◽  
Eduardo Sánchez Jacob ◽  
...  

<p>Agricultural practices and technologies play a crucial role in the adaptation to climate change and disaster risk reduction, especially in contexts of high social and environmental vulnerability as in the Meso American Dry Corridor. This area, home to more than 40 million people and half of the smallholders basic grain farmers, is highly sensitive to El Niño phenomenon, associated to 30-40% decrease of precipitation and long periods of water shortages. This in turn makes agricultural production difficult to success and maintain subsistence livelihoods of the rural poor. Thus, adaptation to climate variability is key for sustainable development in the dry corridor.</p><p>In this study we develop a methodology to systematically review Good Agricultural Practices (GAP) for climate change adaptation and disaster risk reduction to gain a comprehensive overview of adaptation options that can guide policy recommendations at the local level. The food-water-energy nexus approach has been considered in this methodology.</p><p>The methodology starts analyzing good agricultural practices (GAP) already identified in the Meso American Dry Corridor documented by different types of actors (International organizations, NGOs, local and national governments, academia, private sector). They were classified in different agricultural subsectors (farming, livestock, agroforestry, forestry and fishing and aquaculture) regarding climate variability and several natural hazards such as drought and flood. Then, a live spread sheet database was developed where the best practices were organized following the criteria defined based on literature review and expert knowledge. These  criteria were established to assess each potential good practice taking into account agroecological adequacy, socioeconomic viability, increase in resilience and environmental co-benefits, and specific consideration to the water-energy nexus. Finally, a group of 145 GAP were identified for the region.</p><p>Most of the GAP correspond to crop production, and they are mostly related to drought management and coping with interannual climate variability. It is observed that GAP are frequently implemented as a combination of practices and techniques as well as to face several hazards at the same time. In this regard, the analysis of water resources and the energy component should be seen under the food-water-energy nexus approach to ensure that a complete assessment of a potential GAP.</p>


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2001
Author(s):  
Sadam Hussain ◽  
Saddam Hussain ◽  
Ru Guo ◽  
Muhammad Sarwar ◽  
Xiaolong Ren ◽  
...  

Human efforts to produce more food for increasing populations leave marks on the environment. The use of conventional agricultural practices, including intensive tillage based on the removal of crop residue, has magnified soil erosion and soil degradation. In recent years, the progressive increase in the concentration of greenhouse gases (GHGs) has created global interest in identifying different sustainable strategies in order to reduce their concentration in the atmosphere. Carbon stored in soil is 2–4 times higher than that stored in the atmosphere and four times more when compared to carbon stored in the vegetation. The process of carbon sequestration (CS) involves transferring CO2 from the atmosphere into the soil or storage of other forms of carbon to either defer or mitigate global warming and avoid dangerous climate change. The present review discusses the potential of soils in sequestering carbon and mitigating the accelerated greenhouse effects by adopting different agricultural management practices. A significant amount of soil organic carbon (SOC) could be sequestered by conversion of conventional tillage to conservation tillage. The most important aspect of conservation agriculture is thought to improve plant growth and soil health without damaging the environment. In the processes of climate change mitigation and adaptation, zero tillage has been found to be the most eco-friendly method among different tillage techniques. No-till practice is considered to enable sustainable cropping intensification to meet future agricultural demands. Although no-tillage suggests merely the absence of tillage, in reality, several components need to be applied to a conservation agriculture system to guarantee higher or equal yields and better environmental performance than conventional tillage systems.


EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
Jesscia A. Lepper ◽  
Aswathy Sreedharan ◽  
Renée Goodrich Schneider ◽  
Keith R. Schneider

Good agricultural practices (GAPs) and good handling practices (GHPs) encompass the general procedures that growers, packers and processors of fresh fruits and vegetables should follow to ensure the safety of their product. GAPs usually deal with preharvest practices (i.e., in the field), while GHPs cover postharvest practices, including packing, storage and shipping. This factsheet covers GAPs relating to packing operation sanitation. There are seven other Florida Cooperative Extension factsheets in the ‘Food Safety on the Farm’ series that focus on specific aspects of the GAPs program and how they relate to Florida crops and practices. Under the new Food Safety Modernization Act (FSMA), GAPs are a foundation of the Produce Safety Rule (PSR). Other than for round tomatoes in Florida (T-GAPs regulation), GAPs have mainly been a voluntary program. Additionally the PSR mandates all non-exempt operations to follow these new FSMA federal guidelines (6), but all exempt commodities and for those producers exporting to foreign countries, GAPs may still be required. Both the mandatory PSR and GAPs aim to reduce the foodborne illness burden associated with produce.


Sign in / Sign up

Export Citation Format

Share Document