scholarly journals Bio-Based Waste’ Substrates for Degraded Soil Improvement—Advantages and Challenges in European Context

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 385
Author(s):  
Malgorzata Kacprzak ◽  
Iwona Kupich ◽  
Anna Jasinska ◽  
Krzysztof Fijalkowski

The area of degraded sites in the world is constantly expanding and has been a serious environmental problem for years. Such terrains are not only polluted, but also due to erosion, devoid of plant cover and organic matter. The degradation trends can be reversed by supporting remediation/reclamation processes. One of the possibilities is the introduction of biodegradable waste/biowaste substrates into the soil. The additives can be the waste itself or preformed substrates, such composts, mineral-organic fertilizers or biochar. In EU countries average value of compost used for land restoration and landfill cover was equal 4.9%. The transformation of waste in valuable products require the fulfillment of a number of conditions (waste quality, process conditions, law, local circumstances). Application on degraded land surface bio-based waste substrates has several advantages: increase soil organic matter (SOM) and nutrient content, biodiversity and activity of microbial soil communities and change of several others physical and chemical factors including degradation/immobilization of contaminants. The additives improve the water ratio and availability to plants and restore aboveground ecosystem. Due to organic additives degraded terrains are able to sequestrate carbon and climate mitigate. However, we identified some challenges. The application of waste to soil must comply with the legal requirements and meet the end of use criteria. Moreover, shorter or long-term use of bio-waste based substrate lead to even greater soil chemical or microbial contamination. Among pollutants, “emerging contaminants” appear more frequently, such microplastics, nanoparticles or active compounds of pharmaceuticals. That is why a holistic approach is necessary for use the bio-waste based substrate for rehabilitation of soil degraded ecosystems.

2020 ◽  
Author(s):  
Maria Jose Martinez-Sanchez ◽  
Salvadora Martinez-Lopez ◽  
Lucia Belen Martinez-Martinez ◽  
Maria Ortega ◽  
Manuel Hernandez-Cordoba ◽  
...  

<p>The modification of environmental conditions and the subsequent evolution of the ecosystems results in soil degradation or desertification, which is also caused by the abandonment of the countryside, poor agricultural practices and the socio-economic dynamics that nowadays presents the rural environment. Land degradation leads to loss of fertility, nutrients and vegetation cover and increased erosion, pollution, salinization and alkalinization. The effects derived from this situation aggravate, in turn, climate change, in a strongly intertwined dynamics that feeds back.</p><p>Degraded soils are recoverable through various strategies, among them good agricultural practices being especially relevant.  In this paper, the degree of desertification of several plots of soil that have undergone treatments for the incorporation of organic matter (sewage sludge, manure from different animals, composted plant remains) and their untreated counterparts (blank) is evaluated. To this end, desertification indicators (salinization, organic matter, phosphorus content) included in the LIFE AMDRYC4 Project have been used to monitor soil neutrality, as a measure of the global desertification suffered by a plot.</p><p>The results obtained clearly show an improvement in the soil characteristics following the application of the mentioned strategy for soil treatment. It is therefore concluded that soil degradation is mitigated by good agricultural practices, which leads to a decrease in erosion and salinization and an increase in organic matter, nutrient content, plant cover and the ability to sequester dioxide carbon.  Soils are not affected by polluting processes both in terms of potentially toxic elements and other emerging pollutants. The experimental data obtained indicate that soils in this way remediated can be used to reduce the concentration of greenhouse gases in the atmosphere and represent a good tool to fight against climate change.</p><p> </p>


Derelict and degraded land destroys amenity, causes pollution and is a waste of productive land surface. Despite the worldwide activity to restore it there is an enormous backlog, which in England has increased since 1974. In the past much of this restoration was empirically based and not always successful. But natural ecosystems develop unaided on raw starting materials by natural ecological processes. A proper understanding of these has led to more reliable and inexpensive restoration techniques. At the same time we have come to realize that, because, at the start, the slate has been wiped clean, many different end points are possible. Derelict land is a challenge and opportunity for creative manipulation of our landscape. Yet what is achieved in practice is often pedestrian, unscientific and uneconomic. Often the simple treatments that would minimize the impact of industrial activity, and would set the restoration off early and in the right direction, are not carried out. Yet there are plenty of good examples of what can be done. It appears that once more we may be victims of the British failure in technology and imagination transfer. For this the fault seems to lie broadly, not only with planners, industrialists and government, for not always making sure something is done, but also with scientists, for not applying their ecological knowledge sufficiently to problems of hard practice.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Juan D. León ◽  
Nelson W. Osorio

Land degradation is the result of soil mismanagement that reduces soil productivity and environmental services. An alternative to improve degraded soils through reactivation of biogeochemical nutrient cycles (via litter production and decomposition) is the establishment of active restoration models using new forestry plantations, agroforestry, and silvopastoral systems. On the other hand, passive models of restoration consist of promoting natural successional processes with native plants. The objective in this review is to discuss the role of litter production and decomposition as a key strategy to reactivate biogeochemical nutrient cycles and thus improve soil quality in degraded land of the tropics. For this purpose the results of different projects of land restoration in Colombia are presented based on the dynamics of litter production, nutrient content, and decomposition. The results indicate that in only 6–13 years it is possible to detect soil properties improvements due to litter fall and decomposition. Despite that, low soil nutrient availability, particularly of N and P, seems to be major constraint to reclamation of these fragile ecosystems.


2015 ◽  
Vol 17 (1) ◽  
pp. 9
Author(s):  
Sri Hartati ◽  
Hery Widijanto

<p>Degraded land is the land that has lost a lot of nutrients and soil organic matter. This research is aimed to determine the effect of the kinds of organic fertilizers to Ca and Mg uptake and yield of groundnuts on degraded land. This research was done using Completely Randomized Design (CRD) single factor and three replications for each treatment. The results showed that organic fertilizer influence to Ca and Mg uptake and the yield of groundnut on degraded lands. Eichonia crasspies manure increased Ca and Mg uptake of groundnut on degraded soil. Cow manure fertilizer increased 200% of their groundnut production as compared to without organic fertilizer.</p>


2018 ◽  
Vol 4 ◽  
pp. 33-47 ◽  
Author(s):  
Inviolata Nanyuli ◽  
Stanley Omuterema ◽  
Francis N. Muyekho

Kakamega County is one of the most densely populated regions in Kenya and most people are dependent on agriculture for their livelihood. High population has led to continuous cultivation hence depletion of nutrients through the removal of crop residues, leaching and soil erosion. Inorganic fertilizers can restore soil fertility but are unaffordable for the majority of smallholder farmers living with 1240 KES (10.32 EUR) per month. However, despite government and NGOs interventions towards promoting the use of organic fertilizers in Kakamega County, the adoption rates are still low due to the long waiting period before the compost manure is ready. This study aimed at solving the problem of the period taken by the locally available organic matter to decompose and consequently the quality of the compost manure produced from various treatments. The objective of the study was to examine the effects of EM and Biochar on the rate of decomposition of locally available organic materials under Berkeley composting technique; and to evaluate the nutrient content of compost manure produced from the different treatments. Experimental design was used to examine the effects of EM and Biochar on the rate of decomposition under Berkeley composting technique and to evaluate the nutrient content of compost manure produced from different treatments. Four treatments; (i) Normal Berkeley (Control) (ii) EM+Berkeley (iii) Biochar+Berkeley, and (iv) EM+Biochar+Berkeley were evaluated in a completely randomized block design replicated three times. Nutrient content analysis used; Wet chemistry, LDPSA, PXRF and Mid-infrared (MIR) spectroscopy. Berkeley Hot/Rapid composting was the most adopted composting technique (28.65%), significance (χ2 = 66.500). Combining Biochar and EM (T4) significantly (P<0.05) accelerated the rate of decomposition of organic matter by attaining the highest temperature of 60°C on the 4th day, followed by compost heap with biochar alone (T3) and compost heaps with EM (T2) which attained the highest temperature of 58°C respectively on the 6th day compared to compost piles without biochar or EM at a temperature of 55°C on 8th day. The results suggest that Biochar and EM accelerate the composting process. pH, total N, K and CEC were not significantly affected by the composting treatments, while Total Carbon was significantly (p<0.05) highest in the Biochar+Berkeley treatment, followed by EM+Berkeley treatment and lowest in EM+Biochar+Berkeley treatment. Phosphorus and Total carbon were also higher in EM compost (1.8% and 5.4%) (p<0.05) compared to non-EM compost (1.2% and 5.0%).


2020 ◽  
pp. 37-43
Author(s):  
B.I. KORZHENEVSKIY ◽  
◽  
N.V. KOLOMIYTSEV ◽  
G.YU. TOLKACHEV

Putting out of using large areas of agricultural lands in the central region over the past years has led to worsening the prospects of their purposed use, although the problem of the relevance of their restoration still remains. For many years the unused land was exposed to both natural exogenous processes such as erosion, suffusion, etc. and biological and chemical changes, usually for the worse for agriculture. There are considered elements of monitoring aimed at assessing the prospects or lack of perspectives of rehabilitation of degraded lands. An energy approach to assessing the state of slopes and soils located within these slopes is presented. The main factors of natural and anthropogenic character in assessing the prospects for land restoration are their steepness, excess relative to local bases of erosion other morphological characteristics of slopes which in general is reduced to an assessment of the energy provision of slopes and soils. So the higher the energy capacity of slopes – they are less promising for development, for soils – there is a reverse picture – the higher their energy reserves, the more promising is their use. Approaches to zoning the territory for monitoring from larger taxons of natural and anthropogenic genesis to the sites of special surveillance within which the prospects for rehabilitation of the agricultural land are evaluated. The most important factor is the material expediency of such actions, i.e. before starting the restoration work it is necessary to assess the profitability or loss of the proposed event. In cases of the material expediency it is feasible as further actions to include energy assessments of slopes and soils; zoning of the object according to the steepness and oriented characteristics of soil washout; and the possibility of obtaining agronomic and meteorological data on a timely basis. The result of the work is a forecast assessment of the prospects for restoring degraded land for the intended purpose using modern databases and WEB-systems.


Biochar ◽  
2021 ◽  
Author(s):  
Carlos Rodriguez-Franco ◽  
Deborah S. Page-Dumroese

AbstractThere are thousands of abandoned mine land (AML) sites in the U.S. that need to be restored to reduce wind and water erosion, provide wildlife forage, shade streams, and improve productivity. Biochar created from woody biomass that would normally be burned in slash piles can be applied to soil to improve soil properties and is one method to restore AML soil productive capacity. Using this ‘waste’ biomass for biochar and reclamation activities will reduce wildfire risk, air pollution from burning, and particulates released from burning wood. Biochar has the potential to improve water quality, bind heavy metals, or decrease toxic chemical concentrations, while improving soil health to establish sustainable plant cover, thereby preventing soil erosion, leaching, or other unintended, negative environmental consequences. Using forest residues to create biochar also helps reduce woody biomass and improves forest health and resilience. We address concerns surrounding organic and inorganic contaminants on the biochar and how this might affect its’ efficacy and provide valuable information to increase restoration activities on AMLs using biochar alone or in combination with other organic amendments. Several examples of AML biochar restoration sites initiated to evaluate short- and long-term above- and belowground ecosystem responses are presented.


Biologia ◽  
2010 ◽  
Vol 65 (1) ◽  
Author(s):  
Zvjezdana Stančić

AbstractMarshland vegetation of the class Phragmito-Magnocaricetea in the Krapina river valley was investigated during 2006 and 2007, and some sporadic investigations were made earlier. Phytosociological studies were carried out in accordance with the standard Braun-Blanquet methodology. As a result of the field work, and a small amount of data from the literature, 120 relevés were collected and 18 communities were established. For the purposes of comparison, the relevés were also classified using numerical methods. The clusters obtained mostly correspond to specific associations, but do not confirm the division into traditional vegetation alliances and orders. In the analysis of the ecological factors it is established that separation of the relevés is influenced by nutrient content, soil reaction, soil moisture, depth of water, and type of management. Analysis of the plant life forms shows, in all marshland communities, a prevalence of hemicryptophytes, geophytes and hydrophytes. The most widespread marshland communities of the investigated area are: Phalaridetum arundinaceae, Phragmitetum australis and Galio palustris-Caricetum ripariae. Furthermore, Carex randalpina community is recorded for the first time in Croatia. The most threatened marshland communities could be considered to be: Carex randalpina community, Caricetum vesicariae, Leersietum oryzoidis and Oenantho-Rorippetum. They are selected because of their very small surfaces in the investigated area and the small number of known localities within the territory of Croatia. The most invasive alien plant species in the Krapina river valley is Solidago gigantea. It spreads in potential habitats of marshland vegetation, and it is recorded in the species composition of many marshland communities. For the preservation of marshland vegetation, and especially threatened types, it is necessary to maintain the water regime of the habitats, to not remove natural plant cover due to spreading of neophytes, and to provide occasional mowing and burning.


2014 ◽  
Vol 15 (1) ◽  
pp. 34-41 ◽  
Author(s):  
J. Molnar ◽  
J. Agbaba ◽  
A. Tubić ◽  
M. Watson ◽  
M. Kragulj ◽  
...  

This work investigates the effects of ultraviolet (UV)/H2O2 advanced oxidation on the content and characteristics of natural organic matter (NOM) originating from two different groundwaters (3.03–9.69 mg/L total organic carbon (TOC), 2.71–4.31 Lmg−1m−1 specific ultraviolet absorbance (SUVA)). Application of UV irradiation resulted in a minor reduction in the total content of NOM. Using UV/H2O2 advanced oxidation led to a significant reduction of the aromatic character of NOM (SUVA was reduced by up to 80%) and an increase in the hydrophilic character of the residual NOM, with the optimal UV/H2O2 treatment conditions depending on the water type. In addition, fluctuations in trihalomethane formation potential (THMFP) were observed depending on the UV/H2O2 process conditions, with a maximal reduction of about 40% achieved for both waters.


1970 ◽  
Vol 9 ◽  
pp. 99-104 ◽  
Author(s):  
Shankar Raj Pant ◽  
Kayo Devi Yami

Rapid growth of population in Kathmandu valley has increased solid wastes generation tremendously. One of the best ways of managing the organic wastes is to recycle domestic wastes at the site of its origin by vermicomposting into valuable organic fertilizers. A laboratory experiment was carried out at for proper management of solid wastes of Kathmandu valley, generated from Ayurveda industry, sugar mill (bagasse), wood mill, kitchen, and vegetable and fruit markets. The experiment dealt with the decomposition of solid wastes through the action of red worm (Eisenia foetida). The vermicomposting of mixtures were carried out for 12 weeks. Observations showed that vermicompost obtained from Ayurveda industry wastes was found to be rich in N, P, K and organic matter, and vermicompost from sugarcane bagasse was found best for rapid multiplication of Eisenia foetida. Fish scales and sawdust were identified as worst substrate for this worm. Key words: vermi compost; organic solid wastes; Eisenia foetida DOI: 10.3126/njst.v9i0.3172 Nepal Journal of Science and Technology 9 (2008) 99-104


Sign in / Sign up

Export Citation Format

Share Document