Effect of short-term thawing on the mechanical properties of frozen glacial tills

Author(s):  
Yanju Fu ◽  
Ziming Liu ◽  
Yao Jiang

<p>       Glacial tills are ubiquitous in periglacial mountains and can be destabilized as the main source materials of glacial debris flows due to atmospheric warming. In general, these surface hillslope materials are internally mixed with debris, ice, fluids etc., where the constituent fluids may experience prolonged freeze-thaw cycles. Although many studies including laboratory tests, field investigations and numerical simulations have been conducted to examine the formation mechanism relating to glacial debris flows in a variety of circumstances, largely unknown mechanisms impel destabilization of loose, frozen, or non-frozen glacial tills on steep slopes. In the present study, a series of simple direct-shear tests were performed to further investigate the shear behavior and strength properties of glacial tills subjected to short-term thawing. The samples with differing water contents and dry densities were firstly frozen under the same period but sheared with varying thawing intervals. The results directly show that (1) the stress-strain curves of all tested samples depict strain-softening characteristic to some extents, but the difference between peak and critical resistance decreases with increase of thawing intervals; (2) the dry density can enhance the shear resistance but the initiation water content may result in the decrease of shear resistance for the relative denser samples; (3) the shear strength profiles manifest that the internal friction angle increases but the cohesion decreases with increase of thawing intervals. These laboratory results suggest that the frozen water content can have measurable effect on the strength properties of glacial tills in shear, and the phase transition process from ice to water may affect the water distribution as a consequence of thawing interval. It should be mentioned that the results preliminarily provide fundamental information regarding shear strength properties of glacial tills by considering short-term thawing effect, and further study will be needed to examine the shear behavior of glacial tills under other potential factors.</p>

2012 ◽  
Vol 256-259 ◽  
pp. 287-292
Author(s):  
Yi Chen ◽  
Jing Zhao ◽  
Xiao Hong Hu

The shear strength of expansive soils is now a key geotechnical problem. The water content and dry density of expansive soils have deep effect on its shear strength. For analyzing the detail relationship of the water content, dry density and shear strength of this special soil, direct shear test was carried out with the samples from Xinxiang in middle line of South to North water diversion project. The results indicate that both of the cohesion and friction angle grow with dry density and decrease with initial water content. Applying the linear regression calculation, we obtained mathematical expressions which reveal the variation of shear strength with the dry density and initial water content of Xinxiang expansive soils.


Author(s):  
Zhen Han ◽  
Jiangwen Li ◽  
Pengfei Gao ◽  
Bangwei Huang ◽  
Jiupai Ni ◽  
...  

As a constructed wetland ecosystem, paddy field plays an irreplaceable role in flood storage and detention, groundwater replenishment, environmental protection, and ecological balance maintenance. New paddy field construction can give full play to the production and ecological functions of paddy field and can adjust the development structure of the agricultural industry effectively. The soil properties of shear strength and permeability, which provide a theoretical basis for engineering design, construction, and post-operation, are important indexes in the site selection of new paddy field. The shear strength and permeability properties of soils from different land use types (vegetable field, gentle slope dryland, corn field, grapery, and abandoned dryland) for engineering new paddy field construction were investigated in this study. The results showed that the soil water content had a significant effect on the soil shear strength, internal friction angle, and cohesion. The total pressure required for soil destruction decreased with increasing water content under the same vertical pressure, resulting in easier destruction of soils. The internal friction angle decreased with increasing soil water content, and the soil cohesion first increased and then decreased with increasing soil water content. Considering that paddy fields were flooded for a long time, the soil strength properties had certain water sensitivity. Effective measures must be taken to reduce the change in soil water content, so as to ensure the stability of the embankment foundation, roadside ditch foundation, and cutting slope. In addition, the influence of changing soil water content on the strength properties of paddy soils should be fully considered in engineering design and construction, and the soil bulk density at the plough pan should reach at least 1.5 g cm−3 or more to ensure better water retention and the anti-seepage function of paddy field. The study can provide construction technology for engineering new paddy field construction in a hilly mountainous region of southwestern China.


2012 ◽  
Vol 204-208 ◽  
pp. 3287-3293
Author(s):  
Xin Xue ◽  
Hiroshi Seki ◽  
Yu Song

There have been few reports on shear behavior of reinforced concrete (RC) beams with corroded stirrups, and the influence of stirrup corrosion has yet to be identified. Given this background, experience was carried out to investigate the shear behavior of RC beams containing corroded stirrups. Investigation results indicate that if the percentage local maximum mass loss is below 35%, there is little influence on the load-carrying mechanism. The concrete shear resistance seems to change little and the shear capacity can be calculated by just taking into consideration the reduction in stirrup shear resistance. It is also found that the anchorage conditions of the stirrups have a predominant influence on the shears of RC beams.


1994 ◽  
Vol 353 ◽  
Author(s):  
M. Umedera ◽  
A. Fujiwara ◽  
N. Yasufuku ◽  
M. Hyodo ◽  
H. Murata

AbstractA series of triaxial compression tests is being conducted under the drained condition on bentonite and sand mixtures, known as buffer, in saturated and optimum water content states to clarify the mechanical properties of the buffer.It was found that the mechanical properties of bentonite and sand mixtures are strongly influenced by water and bentonite contents: shear strength in a saturated state is less than that in an optimum water content state; shear strength decreases rapidly with increasing bentonite content. Strength properties are much dependent on confining pressure.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yanlong Li ◽  
Zili Wang ◽  
Yang Luo

Shear strength of shallow expansive soil varies along with the depth under the freeze-thaw effect. This work investigates shear strength characteristics of shallow expansive soil by simulating the actual freeze boundary conditions of seasonal frozen areas with water supplement. An integrated approach incorporating the freeze-thaw test and direct shear test was adopted. Firstly, unidirectional freezing tests for expansive soil columns under three different freezing temperature gradients were carried out. Secondly, direct shear tests under low vertical stress were performed on the standard samples, which were prepared by using cutting rings cut the thawed expansive soil columns into nine segments along with the depth. Temperature, water content, and dry density at different depths were also investigated after the freeze-thaw process. The test results showed that, after the freeze-thaw process, the shear strength of expansive soil columns showed significant differences along with the depth and highly correlated with water content, specifically the higher water content and the lower shear strength. The minimum shear strength in the expansive soil columns occurred at the soil layer below the frozen and unfrozen zones interface. The expansive soil column’s shear strength changed most under the moderate freezing temperature gradient corresponding to the most considerable shear strength reduction. Moreover, the significant decrease in cohesion was the main reason for the shear strength reduction of expansive soil after the freeze-thaw process. These results indicate significant depth variability in shear strength of expansive soil under the freeze-thaw effect.


2012 ◽  
Vol 212-213 ◽  
pp. 108-112 ◽  
Author(s):  
Wen Sheng Dong ◽  
Xiu Fang Jiang ◽  
Xian Feng He ◽  
Ying Ying Zai

Aim to the high sandy river “ripping up the riverbed” phenomenon, by experiment, analyzing the relationship between clay dry density, water content, plasticity index and its shear strength, and its mechanical properties. Create the conditions for studying clay mechanical strength and the critical condition of “bottom tearing scour”.


2010 ◽  
Vol 34 (3) ◽  
pp. 631-638 ◽  
Author(s):  
Rita de Cássia Ribeiro Carvalho ◽  
Wellington Willian Rocha ◽  
José Cardoso Pinto ◽  
Bruno da Silva Pires ◽  
Moacir de Souza Dias Junior ◽  
...  

Pasture productivity can drop due to soil compaction caused by animal trampling. Physical and mechanical alterations are therefore extremely important indicators for pasture management. The objective of this research was to: draw and evaluate the Mohr failure line of a Red Yellow Latossol under different pasture cycles and natural forest; calculate apparent cohesion; observe possible physical alterations in this soil; and propose a correction factor for stocking rates based on shear strength properties. This study was conducted between March/2006 and March/2007 on the Experimental Farm of Fundação de Ensino Superior de Passos, in Passos, state of Minas Gerais. The total study area covered 6 ha, of which 2 ha were irrigated pasture, 2 ha non-irrigated pasture and 2 ha natural forest. Brachiaria brizantha cv. MG-5 Vitória was used as forage plant. The pasture area was divided into paddocks. The Mohr failure line of samples of a Red Yellow Latossol under irrigated pasture equilibrated at a tension of water content of 6 kPa indicated higher shear strength than under non-irrigated pasture. The shear strength under irrigated pasture and natural forest was higher than under non-irrigated pasture. At a tension of water content of 33 kPa no difference was found in shear strength between management and use. Possible changes in soil structure were caused by apparent cohesion. The values of the correction factor were close to 1, which may indicate a possible soil compaction in prolonged periods of management.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Bo Meng ◽  
Hongwen Jing ◽  
Shengqi Yang ◽  
Yingchao Wang ◽  
Biao Li

The shear behavior of concrete blocks reinforced by fully grouted bolts with different diameters was studied in this paper. More than 90 intact cubic samples (100 mm × 100 mm × 100 mm) with bolts ranging from 2 mm to 5 mm in diameter were tested at a constant stain rate of 0.5 mm/min. An oblique shear apparatus, which could simultaneously apply shear and normal force on tested samples at three slope angles (53°, 58°, and 63°) of a predetermined shear plane, was employed. The results indicate that the bolt has no evident influence on the shear behavior of intact concrete blocks at the prepeak shear strength stage. The bolt could significantly reduce the shear strength drop in the peak shear strength of the concrete block and contribute to reserving the residual shear strength of concrete blocks, especially at steep slope angles of the shear failure plane. The shear resistance provided by the bolt to the concrete block at the residual shear slip stage has a positive relationship with the diameter. The bolt with a larger diameter inflected in the vicinity of the shear failure plane of concrete block at the postpeak shear strength stage; additional normal force and direct shear resistance could still be persistently provided. Two empirical equations of the apparent cohesion and apparent internal angle of the bolted concrete block were obtained by linear regression considering rb, which is the ratio of the cross-sectional area of the bolt to that of the bolted concrete block.


2012 ◽  
Vol 512-515 ◽  
pp. 1905-1918
Author(s):  
Yu Xian Shao ◽  
Bin Shi ◽  
Chun Liu ◽  
Lei Gao

Temperature significantly influences the engineering properties of clayey soil and this temperature effect usually depends on soil type. In this investigation, laboratorial experiments were conducted on three soils to evaluate the adsorbed water content, Atterberg limits, swelling, shear strength and permeability under different temperatures (5-50°C). The results indicate that liquid limit decreases, swelling increases, permeability increases with increasing temperature. It is fundamentally due to the change of adsorbed water content. Hydrophilic minerals, which contain large amounts of adsorbed water, play an important role in the temperature effect. With the increase of hydrophilic minerals, the temperature effect on liquid limit increases and the effect on swelling ratio decreases. The hydrophilic minerals content also has significant impact on the temperature effect of permeability. With increasing temperature, the adsorbed water is transformed to free water, and then the permeability may increase significantly. The shear strength of clayey soils with higher content of hydrophilic mineral is more sensitive to temperature variation. The cohesive force mainly changes linearly with the temperature. Different phenomena, i.e. thermal-hardening or thermal-softening, was observed on strength behaviour due to different hydrophilic mineral content, moisture content and dry density of sample.


Author(s):  
Kristýna Bláhová ◽  
Lenka Ševelová ◽  
Pavla Pilařová

Shear strength of soils is highly affected by moisture conditions (i.e. water content), especially if the soil contains clay materials. Usually the laboratory specimen, which are used to determine shear strength of soil are prepared at water content and dry density same as in the field conditions, without respect to the fact, that the conditions in the future might not remain the same. For the purpose of this study soil specimen were compacted and the optimum moisture content was identified. After compaction soil was tested at the dry side of optimum water content at w = 9 %, 10 % and 11 %. Parameters of shear strength were obtained and used for stability analysis with software GEOSLOPE/W 2012. According to referenced literature, it was expected for the shear strength of the soil to decrease with increasing water content. This hypothesis was not proven for clayey soil from Brno region. Development of values of friction angle and cohesion exhibited anomalous behaviour and such development was found also for values of Factor of safety (FOS) obtained from stability analyses. Results proved the necessity of taking moisture conditions into account, when processing stability analyses, in order to achieve reliable and safe constructions.


Sign in / Sign up

Export Citation Format

Share Document