A simple model to assess the long term fate of the AMOC

Author(s):  
Richard Wood

<p>Studies with global climate models over the past 25 years have shown a range of long-term responses of the Atlantic Meridional Overturning Circulation (AMOC), in response to scenarios in which greenhouse gases are increased then eventually stabilised at some value, possibly after temporarily overshooting that value. AMOC responses include stabilisation at weaker than the pre-industrial level, rapid recovery following a period of quasi-steady weak circulation, overshooting to stronger than pre-industrial strength, or tipping to a quasi-permanent weak state. While many of these studies have gained insight into the mechanisms behind their individual model behaviour, no overarching understanding exists of what determines how a particular model will respond.   </p><p>We present a simple AMOC model suitable to characterise the different possible long-term responses, and use it as a (partially) unifying framework to show how the different behaviours can arise from a competition between thermal and haline feedbacks. The results are relevant to defining ‘safe mitigation pathways’ that avoid or reduce the risk of AMOC tipping or potentially dangerous overshoots.</p>

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


2014 ◽  
Vol 7 (7) ◽  
pp. 2061-2072 ◽  
Author(s):  
T. Kanitz ◽  
A. Ansmann ◽  
A. Foth ◽  
P. Seifert ◽  
U. Wandinger ◽  
...  

Abstract. In the CALIPSO data analysis, surface type (land/ocean) is used to augment the aerosol characterization. However, this surface-dependent aerosol typing prohibits a correct classification of marine aerosol over land that is advected from ocean to land. This might result in a systematic overestimation of the particle extinction coefficient and of the aerosol optical thickness (AOT) of up to a factor of 3.5 over land in coastal areas. We present a long-term comparison of CALIPSO and ground-based lidar observations of the aerosol conditions in the coastal environment of southern South America (Punta Arenas, Chile, 53° S), performed in December 2009–April 2010. Punta Arenas is almost entirely influenced by marine particles throughout the year, indicated by a rather low AOT of 0.02–0.04. However, we found an unexpectedly high fraction of continental aerosol in the aerosol types inferred by means of CALIOP observations and, correspondingly, too high values of particle extinction. Similar features of the CALIOP data analysis are presented for four other coastal areas around the world. Since CALIOP data serve as important input for global climate models, the influence of this systematic error was estimated by means of simplified radiative-transfer calculations.


Geosciences ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 255 ◽  
Author(s):  
Thomas J. Bracegirdle ◽  
Florence Colleoni ◽  
Nerilie J. Abram ◽  
Nancy A. N. Bertler ◽  
Daniel A. Dixon ◽  
...  

Quantitative estimates of future Antarctic climate change are derived from numerical global climate models. Evaluation of the reliability of climate model projections involves many lines of evidence on past performance combined with knowledge of the processes that need to be represented. Routine model evaluation is mainly based on the modern observational period, which started with the establishment of a network of Antarctic weather stations in 1957/58. This period is too short to evaluate many fundamental aspects of the Antarctic and Southern Ocean climate system, such as decadal-to-century time-scale climate variability and trends. To help address this gap, we present a new evaluation of potential ways in which long-term observational and paleo-proxy reconstructions may be used, with a particular focus on improving projections. A wide range of data sources and time periods is included, ranging from ship observations of the early 20th century to ice core records spanning hundreds to hundreds of thousands of years to sediment records dating back 34 million years. We conclude that paleo-proxy records and long-term observational datasets are an underused resource in terms of strategies for improving Antarctic climate projections for the 21st century and beyond. We identify priorities and suggest next steps to addressing this.


2018 ◽  
Author(s):  
Martha M. Vogel ◽  
Jakob Zscheischler ◽  
Sonia I. Seneviratne

Abstract. The frequency and intensity of climate extremes is expected to increase in many regions due to anthropogenic climate change. In Central Europe extreme temperatures are projected to change more strongly than global mean temperatures and soil moisture-temperature feedbacks significantly contribute to this regional amplification. Because of their strong societal, ecological and economic impacts, robust projections of temperature extremes are needed. Unfortunately, in current model projections, temperature extremes in Central Europe are prone to large uncertainties. In order to understand and potentially reduce uncertainties of extreme temperatures projections in Europe, we analyze global climate models from the CMIP5 ensemble for the business-as-usual high-emission scenario (RCP8.5). We find a divergent behavior in long-term projections of summer precipitation until the end of the 21st century, resulting in a trimodal distribution of precipitation (wet, dry and very dry). All model groups show distinct characteristics for summer latent heat flux, top soil moisture, and temperatures on the hottest day of the year (TXx), whereas for net radiation and large-scale circulation no clear trimodal behavior is detectable. This suggests that different land-atmosphere coupling strengths may be able to explain the uncertainties in temperature extremes. Constraining the full model ensemble with observed present-day correlations between summer precipitation and TXx excludes most of the very dry and dry models. In particular, the very dry models tend to overestimate the negative coupling between precipitation and TXx, resulting in a too strong warming. This is particularly relevant for global warming levels above 2 °C. The analysis allows for the first time to substantially reduce uncertainties in the projected changes of TXx in global climate models. Our results suggest that long-term temperature changes in TXx in Central Europe are about 20 % lower than projected by the multi-model median of the full ensemble. In addition, mean summer precipitation is found to be more likely to stay close to present-day levels. These results are highly relevant for improving estimates of regional climate-change impacts including heat stress, water supply and crop failure for Central Europe.


2020 ◽  
Author(s):  
Baijun Tian

<p>The double-Intertropical Convergence Zone (ITCZ) bias is one of the most outstanding problems in climate models. This study seeks to examine the double-ITCZ bias in the latest state-of-the-art fully coupled global climate models that participated in Coupled Model Intercomparison Project (CMIP) Phase 6 (CMIP6) in comparison to their previous generations (CMIP3 and CMIP5 models). To that end, we have analyzed the long-term annual mean tropical precipitation distributions and several precipitation bias indices that quantify the double-ITCZ biases in 75 climate models including 24 CMIP3 models, 25 CMIP3 models, and 26 CMIP6 models. We find that the double-ITCZ bias and its big inter-model spread persist in CMIP6 models but the double-ITCZ bias is slightly reduced from CMIP3 or CMIP5 models to CMIP6 models.</p>


2018 ◽  
Vol 31 (22) ◽  
pp. 9335-9350 ◽  
Author(s):  
Anand Gnanadesikan ◽  
Richard Kelson ◽  
Michaela Sten

Abstract A recent paper suggested that the global climate models used to project future climate changes may significantly overestimate the stability of the Atlantic meridional overturning circulation under anthropogenic global warming. It further asserted that “flux adjusting” the models (adding offsets to heat and freshwater fluxes to reproduce the observed density field) may reduce model stability. However, temperature, salinity, and density fields in climate models likely deviate from observations because of biases in model physics as well as inaccuracies in fluxes. In such cases it is unclear whether adjusting the fluxes to produce a more realistic density field will result in a model with more realistic stability properties, as flux correction may be compensating for other inaccuracies in model formulation. We investigate this question using a simplified dynamical box model, in which we can flux correct one version of the model to match density gradients within another version of the model. We show that flux adjustment can realistically compensate for biases in stability associated with some processes, such as uncertainty in the value of the vertical diffusivity, but not other processes, such as inaccurate simulation of the relationship between density structure and overturning or the isopycnal tracer diffusivity coefficient. An ability to compensate for biases when the overturning shuts off does not imply an ability to compensate for biases in when it reestablishes itself, and vice versa.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 420 ◽  
Author(s):  
Alvaro Sordo-Ward ◽  
Isabel Granados ◽  
Ana Iglesias ◽  
Luis Garrote

This study presents a regional assessment of future blue water availability in Europe under different assumptions. The baseline period (1960 to 1999) is compared to the near future (2020 to 2059) and the long-term future (2060 to 2099). Blue water availability is estimated as the maximum amount of water supplied at a certain point of the river network that satisfies a defined demand, taking into account specified reliability requirements. Water availability is computed with the geospatial high-resolution Water Availability and Adaptation Policy Assessment (WAAPA) model. The WAAPA model definition for this study extends over 6 million km2 in Europe and considers almost 4000 sub-basins in Europe. The model takes into account 2300 reservoirs larger than 5 hm3, and the dataset of Hydro 1k with 1700 sub-basins. Hydrological scenarios for this study were taken from the Inter-Sectoral Impact Model Inter-Comparison Project and included simulations of five global climate models under different Representative Concentration Pathways scenarios. The choice of method is useful for evaluating large area regional studies that include high resolution on the systems´ characterization. The results highlight large uncertainties associated with a set of local water availability estimates across Europe. Climate model uncertainties for mean annual runoff and potential water availability were found to be higher than scenario uncertainties. Furthermore, the existing hydraulic infrastructure and its management have played an important role by decoupling water availability from hydrologic variability. This is observed for all climate models, the emissions scenarios considered, and for near and long-term future. The balance between water availability and withdrawals is threatened in some regions, such as the Mediterranean region. The results of this study contribute to defining potential challenges in water resource systems and regional risk areas.


Eos ◽  
2017 ◽  
Author(s):  
Sarah Stanley

Long-term data of higher accuracy could help improve global climate models and reveal trends in black carbon’s influence on Arctic climate.


2011 ◽  
Vol 7 (3) ◽  
pp. 2193-2215 ◽  
Author(s):  
T. Caley ◽  
J.-H. Kim ◽  
B. Malaizé ◽  
J. Giraudeau ◽  
T. Laepple ◽  
...  

Abstract. The Agulhas Current (AC) transport of heat and salt from the Indian Ocean into the South Atlantic around South Africa (Agulhas leakage), has a profound role in the decadal variability of the Atlantic meridional overturning circulation (AMOC), which influences global climate. On glacial-interglacial timescales, paleostudies postulate that Agulhas leakage plays a decisive role for AMOC resumption during terminations (glacial-interglacial transitions). However, efforts to elucidate forcing mechanisms connecting Agulhas leakage with glacial-interglacial AMOC variability have been hampered due to a lack of climate records extracted from the area where the AC originates. Here we present 800-kyr sea surface temperature (SST) and salinity (SSS) records from the "precursor" region of the AC. These records contain strong obliquity-driven 41-kyr cycles, nearly in phase with changes in annual mean insolation and air temperature at high southern latitudes. In contrast, precession-driven cycles were negligible in our SST records, which is surprising given the low-latitude location of the Agulhas leakage. Together, this suggests that long-term Agulhas leakage dynamics are associated with a high latitude rather than a tropical climate forcing mechanism, probably by varying the position of the Southern Hemisphere subtropical convergence (STC) and its associated westerlies. We argue that during terminations stronger Agulhas leakage was triggered by increased obliquity exerting a positive feedback on the global climate system through modulating long-term AMOC variations.


Author(s):  
Armin Bunde ◽  
Jan Eichner

We review recent results on the appearance of long-term persistence in climatic records and their relevance for the evaluation of global climate models and rare events. The persistence can be characterized, for example, by the correlation C(s) of temperature variations separated by s days. We show that, contrary to previous expectations, C(s) decays for large s as a power law, C(s) ~ s<sup>- γ</sup>. For continental stations, the exponent γ is always close to 0.7, while for stations on islands γ ≌ 0.4. In contrast to the temperature fluctuations, the fluctuations of the rainfall usually cannot be characterized by long-term power-law correlations but rather by pronounced short-term correlations. The universal persistence law for the temperature fluctuations on continental stations represents an ideal (and uncomfortable) test-bed for the state-of-the-art global climate models and allows us to evaluate their performance. In addition, the presence of long-term correlations leads to a noval approach for evaluating the statistics of rare events. The persistence of weather states on short terms is a well-known phenomenon: a warm day is more likely to be followed by a warm day than by a cold day and vice versa. The trivial forecast that the weather of tomorrow is the same as the weather of today was, in previous times, often used as a "minimum skill" forecast for assessing the usefulness of short-term weather forecasts. The typical time scale for weather changes is about one week, a time period which corresponds to the average duration of so-called "general weather regimes" or "Grosswetterlagen," so this type of short-term persistence usually stops after about one week. On larger scales, other types of persistence occur, one of them is related to circulation patterns associated with blocking [5]. A blocking situation occurs when a very stable high-pressure system is established over a particular region and remains in place for several weeks. As a result, the weather in the region of the high remains fairly persistent throughout this period. Furthermore, transient low-pressure systems are deflected around the blocking high so that the region downstream of the high experiences a larger than usual number of storms.


Sign in / Sign up

Export Citation Format

Share Document