2D tracer transport on Cartesian and icosahedral grids: scheme comparisons for idealized test cases

Author(s):  
Sakina Takache ◽  
Thomas Dubos ◽  
Sylvain Mailler

<p>The distribution of tracers in the atmosphere results from the presence and emission of gaseous and particulate matter, as well as their transport, sedimentation and (photo-)chemical transformations. Understanding and quantifying these processes in the atmosphere can be addressed through the use of global-scale or regional-scale chemistry-transport numerical models such as CHIMERE (Mailler et al., 2016).</p><p> While possible in principle, it is impractical to use this model to represent long-range transport of dense plumes of gas and aerosols, resulting for instance from massive emissions by volcanic eruptions, forest fires and desertic aerosol tempests. Indeed such studies requiring both large domains and high resolution have a prohibitive numerical cost due to the formulation of CHIMERE on a regular Cartesian mesh. This limitation is shared by all currently operational chemistry-transport models. Additionally, traditional Cartesian meshes pose a numerical singularity at the poles, where the longitude lines converge.</p><p> These limitations may be lifted by replacing CHIMERE’s Cartesian mesh by a fully unstructured mesh. This would allow modelers to vary resolution in space, and hence to focus computational resources in key regions with sharp variations (e.g. volcanic eruptions) where high spatial and temporal resolution is required.</p><p> As a first step in this direction, we compare the numerical performance of transport schemes formulated on Cartesian meshes and schemes formulated on unstructured meshes (Dubey et al., 2015). To focus on differences due to numerics, the unstructured mesh is a quasi-uniform icosahedral mesh such as the one used by global dynamical core DYNAMICO (Dubos et al., 2015). Spatial and temporal coupled and de-coupled schemes of various order are implemented in each mesh framework. A suite of test cases is used to evaluate different properties of the mesh-scheme pairings.To avoid the Cartesian pole singularity, the Cartesian mesh covers a limited domain excluding the poles. Analytical wind fields adapted to this limited domain are used. Metrics are evaluated using the quantities obtained in the simulations, such as convergence using root mean square errors, shape preservation using non-linear tracer relations, and diffusion using total entropy. The stability and monotonicity of the used schemes are also numerically validated.</p><p> We find that a scheme of the Van Leer family on the unstructured mesh has a performance slightly inferior to a similar scheme on a Cartesian mesh. However, since this loss in quality remains moderate, it should be possible to more than compensate for it with a variable resolution. We are currently investigating this question and will present variable-resolution results if this ongoing work is timely completed. If successful, fully unstructured meshes would be a significant step forward in the modeling of scale interactions in atmospheric chemistry, and would potentially allow breakthrough for the understanding of such interactions.</p>

Author(s):  
Vito Basile ◽  
Francesco Modica ◽  
Irene Fassi

In the present paper, a numerical approach to model the layer-by-layer construction of cured material during the Additive Manufacturing (AM) process is proposed. The method is developed by a recursive mechanical finite element (FE) analysis and takes into account forces and pressures acting on the cured material during the process, in order to simulate the behavior and investigate the failure condition sources, which lead to defects in the final part geometry. The study is focused on the evaluation of the process capability Stereolithography (SLA), to build parts with challenging features in meso-micro scale without supports. Two test cases, a cantilever part and a bridge shape component, have been considered in order to evaluate the potentiality of the approach. Numerical models have been tuned by experimental test. The simulations are validated considering two test cases and briefly compared to the printed samples. Results show the potential of the approach adopted but also the difficulties on simulation settings.


2021 ◽  
Author(s):  
Leonardo Mingari ◽  
Andrew Prata ◽  
Federica Pardini

<p>Modelling atmospheric dispersion and deposition of volcanic ash is becoming increasingly valuable for understanding the potential impacts of explosive volcanic eruptions on infrastructures, air quality and aviation. The generation of high-resolution forecasts depends on the accuracy and reliability of the input data for models. Uncertainties in key parameters such as eruption column height injection, physical properties of particles or meteorological fields, represent a major source of error in forecasting airborne volcanic ash. The availability of nearly real time geostationary satellite observations with high spatial and temporal resolutions provides the opportunity to improve forecasts in an operational context. Data assimilation (DA) is one of the most effective ways to reduce the error associated with the forecasts through the incorporation of available observations into numerical models. Here we present a new implementation of an ensemble-based data assimilation system based on the coupling between the FALL3D dispersal model and the Parallel Data Assimilation Framework (PDAF). The implementation is based on the last version release of FALL3D (versions 8.x) tailored to the extreme-scale computing requirements, which has been redesigned and rewritten from scratch in the framework of the EU Center of Excellence for Exascale in Solid Earth (ChEESE). The proposed methodology can be efficiently implemented in an operational environment by exploiting high-performance computing (HPC) resources. The FALL3D+PDAF system can be run in parallel and supports online-coupled DA, which allows an efficient information transfer through parallel communication. Satellite-retrieved data from recent volcanic eruptions were considered as input observations for the assimilation system.</p>


1980 ◽  
Vol 17 (1) ◽  
pp. 60-71 ◽  
Author(s):  
Jean-Claude Mareschal ◽  
Gordon F. West

A tectonic model that attempts to explain common features of Archean geology is investigated. The model supposes the accumulation, by volcanic eruptions, of a thick basaltic pile on a granitoid crust. The thermal blanketing effect of this lava raises the temperature of the granitic crust and eventually softens it enough that gravitational slumping and downfolding of the lava follows.Numerical models of the thermal and mechanical evolution of a granitoid crust covered with a thick lava sequence indicate that such an evolution is possible when reasonable assumptions are made about the temperature dependence of the viscosity in crustal rocks. These models show the lava sinking in relatively narrow regions while wider granite diapirs appear in between. The convection produces strong horizontal temperature gradients that may cause lateral changes in metamoprhic facies. A one order of magnitude drop in accumulated strain occurs between the granite–basalt interface and the center of the granite diaper at a depth of 10–15 km.


2020 ◽  
Vol 22 (5) ◽  
pp. 1351-1369
Author(s):  
Robin Meurice ◽  
Sandra Soares-Frazão

Abstract We propose a finite-volume model that aims at improving the ability of 2D numerical models to accurately predict the morphological evolution of sandy beds when subjected to transient flows like dam-breaks. This model solves shallow water and Exner equations with a weakly coupled approach while the fluxes at the interfaces of the cells are calculated thanks to a lateralized HLLC flux scheme. Besides describing the model, we ran it for four different test cases: a steady flow on an inclined bed leading to aggradation or degradation, a dam-break leading to high interaction between the flow and the bed, a dam-break with a symmetrical enlargement close to the gate and a dam-break in a channel with a 90° bend. The gathered results are discussed and compared to an existing fully coupled approach based on HLLC fluxes. Although both models equally perform regarding water levels, the weakly coupled model looks to better predict the bed evolution for the four test cases. In particular, its results are not affected by an excessive numerical diffusion encountered by the coupled model. Moreover, it usually better estimates the amplitudes of the maximum deposits and scours. It is also more stable when subject to high bed–flow interaction.


2005 ◽  
Vol 5 (6) ◽  
pp. 845-852 ◽  
Author(s):  
D. Rabuffetti ◽  
M. Milelli

Abstract. The HYDROPTIMET Project, Interreg IIIB EU program, is developed in the framework of the prediction and prevention of natural hazards related to severe hydro-meteorological events and aims to the optimisation of Hydro-Meteorological warning systems by the experimentation of new tools (such as numerical models) to be used operationally for risk assessment. The objects of the research are the mesoscale weather phenomena and the response of watersheds with size ranging from 102 to 103 km2. Non-hydrostatic meteorological models are used to catch such phenomena at a regional level focusing on the Quantitative Precipitation Forecast (QPF). Furthermore hydrological Quantitative Discharge Forecast (QDF) are performed by the simulation of run-off generation and flood propagation in the main rivers of the territory. In this way observed data and QPF are used, in a real-time configuration, for one-way forcing of the hydrological model that works operationally connected to the Piemonte Region Alert System. The main hydro-meteorological events that affected Piemonte Region in the last years are analysed, these are the HYDROPTIMET selected test cases of 14–18 November 2002 and 23–26 November 2002. The results obtained in terms of QPF and QDF offer a basis to evaluate the sensitivity of the whole hydro-meteorological chain to the uncertainties in the numerical simulations. Different configurations of non-hydrostatic meteorological models are also evaluated.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 413 ◽  
Author(s):  
Orlando García-Feal ◽  
Luis Cea ◽  
José González-Cao ◽  
José Manuel Domínguez ◽  
Moncho Gómez-Gesteira

Numerical models are useful tools to analyze water quality by computing the concentration of physical, chemical and biological parameters. The present work introduces a two-dimensional depth-averaged model that computes the most relevant and frequent parameters used to evaluate water quality. High performance computing (HPC) techniques based on graphic processing unit (GPU) parallelization have been applied to improve the efficiency of the package, providing speed-ups of two orders of magnitude in a standard PC. Several test cases were analyzed to show the capabilities and efficiency of the model to evaluate the environmental status of rivers and non-stratified estuaries. IberWQ will be freely available through the package Iber.


2003 ◽  
Vol 125 (1) ◽  
pp. 76-83 ◽  
Author(s):  
Peter J. Rodgers ◽  
Vale´rie C. Eveloy ◽  
Mark R. Davies

Numerical predictive accuracy is assessed for component-printed circuit board (PCB) heat transfer in forced convection using a widely used computational fluid dynamics (CFD) software. In Part I of this paper, the benchmark test cases, experimental methods and numerical models were described. Component junction temperature prediction accuracy for the populated board case is typically within ±5°C or ±10%, which would not be sufficient for temperature predictions to be used as boundary conditions for subsequent reliability and electrical performance analyses. Neither the laminar or turbulent flow model resolve the complete flow field, suggesting the need for a turbulence model capable of modeling transition. The full complexity of component thermal interaction is shown not to be fully captured.


2011 ◽  
Vol 139 (9) ◽  
pp. 2811-2831 ◽  
Author(s):  
James D. Doyle ◽  
Saša Gaberšek ◽  
Qingfang Jiang ◽  
Ligia Bernardet ◽  
John M. Brown ◽  
...  

Numerical simulations of flow over steep terrain using 11 different nonhydrostatic numerical models are compared and analyzed. A basic benchmark and five other test cases are simulated in a two-dimensional framework using the same initial state, which is based on conditions during Intensive Observation Period (IOP) 6 of the Terrain-Induced Rotor Experiment (T-REX), in which intense mountain-wave activity was observed. All of the models use an identical horizontal resolution of 1 km and the same vertical resolution. The six simulated test cases use various terrain heights: a 100-m bell-shaped hill, a 1000-m idealized ridge that is steeper on the lee slope, a 2500-m ridge with the same terrain shape, and a cross-Sierra terrain profile. The models are tested with both free-slip and no-slip lower boundary conditions. The results indicate a surprisingly diverse spectrum of simulated mountain-wave characteristics including lee waves, hydraulic-like jump features, and gravity wave breaking. The vertical velocity standard deviation is twice as large in the free-slip experiments relative to the no-slip simulations. Nevertheless, the no-slip simulations also exhibit considerable variations in the wave characteristics. The results imply relatively low predictability of key characteristics of topographically forced flows such as the strength of downslope winds and stratospheric wave breaking. The vertical flux of horizontal momentum, which is a domain-integrated quantity, exhibits considerable spread among the models, particularly for the experiments with the 2500-m ridge and Sierra terrain. The differences among the various model simulations, all initialized with identical initial states, suggest that model dynamical cores may be an important component of diversity for the design of mesoscale ensemble systems for topographically forced flows. The intermodel differences are significantly larger than sensitivity experiments within a single modeling system.


Author(s):  
Simon Gascoin ◽  
Sverrir Guðmundsson ◽  
Guðfinna Aðalgeirsdóttir ◽  
Finnur Pálsson ◽  
Louise Schmidt ◽  
...  

Albedo is a key variable in the response of glaciers to climate. In Iceland, large albedo variations in the ice caps may be caused by the deposition of volcanic ash (tephra). Sparse in situ field measurements are insufficient to characterize the spatial variation of albedo over the ice caps. Here we evaluate the latest MCD43 MODIS albedo product (collection 6) to monitor albedo over the Icelandic ice caps using albedo from ten automatic weather stations in Vatnajökull and Langjökull as ground truth. We examine the influence of the albedo variability within MODIS pixels by comparing the results with a collection of Landsat scenes. The results indicate a good ability of the MODIS product to characterize the seasonal and interannual albedo changes with correlation coefficients ranging from 0.47 to 0.90 (median 0.84) and a small bias ranging from -0.07 to 0.09. The root-mean square errors (RMSE) ranging from 0.08 and 0.21, is larger than that from previous studies, but we did not discard the retrievals flagged as bad quality to maximize the amount of observations given the frequent cloud obstruction in Iceland. We find a positive but non-significant relationship between the RMSE and the subpixel variability as indicated by the standard deviation of the Landsat albedo within the MODIS pixel (R=0.48). The summer albedo maps and time series computed from the MODIS product show that the albedo decreased significantly after the Eyjafjallajökull and Grímsvötn eruptions in 2010 and 2011 in all the main ice caps (except the northernmost Drangajökull), with albedo reduction up to 0.6 over large regions of the accumulation areas. Following this validation, these data will be assimilated in an energy and mass balance model of to better understand the relative influence of the volcanic and climate forcing to the ongoing mass losses of Icelandic ice caps.


2021 ◽  
Vol 7 ◽  
Author(s):  
Aiko Furukawa ◽  
Katsuya Hirose ◽  
Ryosuke Kobayashi

In the maintenance of cable structures, such as cable-stayed bridges and extra-dosed bridges, it is necessary to estimate the tension acting on the cables. The safety of a cable is confirmed by checking whether the tension acting on the cable is within the allowable value. In current Japanese practice, the tension of a cable is estimated using the vibration method or the higher-order vibration method, which considers the natural frequencies of the cable. However, in recent years, the aerodynamic vibration of cables caused by wind has become a problem owing to the recent increase in the cable length and low damping performance of the cable itself. To suppress the aerodynamic vibration of cables, dampers are installed onto the cables. Because the damper changes the cable’s natural frequencies, the vibration method and higher-order vibration method are inappropriate for measuring the tension of a cable with a damper. In this paper, a new tension estimation method for a cable with a damper is proposed. To model a cable with a tensioned Bernoulli-Euler beam, theoretical equations for estimating the natural frequencies were derived. The proposed method inversely estimates the tension and bending stiffness of the cable and damper parameters, simultaneously, from the natural frequencies. The validity of the proposed method was confirmed by conducting numerical simulations and experiments. In the numerical verification, the performance of the proposed method was investigated using 80 numerical models. In the experimental verification, the estimation accuracy of the proposed method was investigated by considering 16 test cases. Thus, it was confirmed that the tension estimation accuracy was high, whereas the bending stiffness and damper parameter estimation accuracy was unsatisfactory. The tension estimation error was within 10% in all experimental cases, and within 5% if two test cases are excluded. The results obtained by the numerical and experimental verifications confirmed the effectiveness of the proposed method in tension estimation.


Sign in / Sign up

Export Citation Format

Share Document