What slates can tell us about strain localisation and fluid flow in accretionary wedges: a microstructural analysis of deforming foreland basin sediments

Author(s):  
Ismay Vénice Akker ◽  
Christoph E. Schrank ◽  
Michael W.M. Jones ◽  
Cameron M. Kewish ◽  
Alfons Berger ◽  
...  

<p>During the accretion of foreland basin sediments into an accretionary or orogenic wedge, the sediments dehydrate and deform. Both dehydration and deformation intensity increase from the outer to the inner wedge and are a function of metamorphic processes and strain. Here, we study the microstructural evolution of slates from the exhumed Flysch units making up a paleo accretionary wedge in the European Alps. With classic SEM imaging and synchrotron X-ray fluorescence microscopy, we document the evolution of slate fabrics and calcite veins and aim at understanding the role of the evolving slate fabrics for strain localisation and fluid flow at the micro-scale.</p><p>The investigated slate samples are from a NW-SE transect covering the outer and inner wedge from 200 to 330 °C. The metamorphic gradient directly correlates with an increasing background strain gradient. With the use of the autocorrelation function, we quantify the evolution of the microfabrics along the metamorphic gradient and document deformation stages from a weakly deformed slate without foliation in the outer wedge to a strongly deformed slate with a dense spaced foliation in the inner wedge. The foliation mainly forms by dissolution-precipitation processes, which increase with increasing metamorphic gradient.</p><p>The slate matrix reveals two main sets of veins. The first vein set includes micron-scaled calcite veinlets with very high spatial densities. The second vein set includes layer parallel calcite veins that form vein-arrays (couple of metres thick) in the inner wedge. Both vein sets could have moved large amounts of fluids through the wedge. The spatial distribution of the micron-veinlets reveals that fluids were moved pervasively. In the case of the layer parallel veins forming vein-arrays, fluid flow was localized, supported by the dense spaced foliation formed in the slate matrix in the inner wedge. This way we now establish a direct link between the microstructural evolution in the slate matrix and associated dehydration, where fluids become increasingly channelled towards the inner wedge. Knowing that the vein-arrays have length dimensions in the order or hundreds of metres to kilometres, these structures are important for larger-scale fluid flow, the feeding of fluids into megathrusts and for related seismic activity in the wedge.</p>

2021 ◽  
Vol 192 ◽  
pp. 52
Author(s):  
Guillaume Barré ◽  
Charlotte Fillon ◽  
Maxime Ducoux ◽  
Frédéric Mouthereau ◽  
Eric C. Gaucher ◽  
...  

During orogenesis, large-scale thrusts as orogenic fronts can act as conduits and/or barriers for fluid flow. Unravelling the timing and modes of tectonic activation of large-scale faults is crucial to understanding the relationship between fluid flow and deformation. The North Pyrenean Frontal Thrust (NPFT) corresponds to a major basement-involved thrust responsible for the northward overthrust of the pre-orogenic sediments on top of the Aquitaine Foreland Basin. This study questions the timing of activation of this thrust, its geometry, the nature of the last fluids, which circulated there, and its role on the circulation of fluids. The structural study confronted to published thermochronology data led to determine the timing of the two tectonic activations during the NPFT compression phase and to relate them to the fluid circulations. We constrain the first activation at Campanian times and link it to the leak of the deep gas reservoir present in depth, as the NPFT acted as a conduit. Then the NPFT acted as a barrier, probably due to the breccia consolidation during the Paleocene quiescence period. Finally, the Eocene-Oligocene reactivation led to fluid circulation of high salinity fluids from the Triassic evaporites leaching. This latter event is associated with a fracturing event and the late generation of calcite veins studied here. This is the first study in the Pyrenees directly applied to the NPFT which uses the association between fluid inclusions study, seismic and thermochronological data. It highlights that the NPFT may be an important structure responsible of the leakage of deep hydrocarbons reservoirs. It also shows the importance of the determination of the activation steps of large-scale faults to decipher the origin of fluid circulations in space and time.


2020 ◽  
Author(s):  
Ismay Vénice Akker ◽  
Christoph E. Schrank ◽  
Michael W.M. Jones ◽  
Cameron M. Kewish ◽  
Alfons Berger ◽  
...  

<p>In plate-convergent settings, fluid-saturated sediments dehydrate during subduction. The sediments are subsequently accreted to the upper plate. Along their dehydration-deformation path, the initial unconsolidated soft marine sediments become thick, foliated, impermeable meta-sedimentary sequences. Fluid flow through such ‘non’-porous low-permeability rocks is concentrated in fracture networks, ranging from the mm- to the km-scale. We study the interplay between ductile and brittle deformation processes and fluid flow by investigating calcite veins in slates from the exhumed European Alpine accretionary wedge across scales (µm to km). These slates experienced peak metamorphic temperatures between 200°C and 330°C and represent the transition between the upper aseismic and seismic zone. With the use of Synchrotron X-ray Fluorescence Microscopy (SXFM), we investigate the slates by visualizing trace-element distributions. This technique shows that alternating cycles of slow pressure-dissolution processes and brittle fracturing persist over long time scales. At the micron-scale, pressure solution of the initial carbonate-rich slates is indicated by an enrichment of newly recrystallized phyllosilicates on cleavage planes and in pressure shadows. These ductile deformation features are mutually overprinted by calcite veins (aperture 10 µm), which are nicely visualized with Sr-SXFM maps. Increasing compaction and recrystallization in the slate-rich matrix leads to progressed dehydration resulting in an increased pore fluid pressure and subsequent hydrofracturing. The micron-sized fractures are immediately filled in with minerals, which are oversaturated at that time in the fluid, resulting in the formation of (i) micron-veinlets. Micron-veinlets collect (ii) into mm-cm sized veins, which themselves form (iii) vein arrays and (iv) mega-arrays, respectively at the 50-100 m and 300-400 m scale. This upscaling of fluid pathways indicates a localised fluid transport through the accretionary wedge, which has important implications for the understanding of the mechanical stability of the accretionary wedge and related seismic activity.</p>


2021 ◽  
Vol 1161 ◽  
pp. 105-112
Author(s):  
Niklas Sommer ◽  
Gabriel Mienert ◽  
Malte Vollmer ◽  
Christian Lauhoff ◽  
Philipp Krooß ◽  
...  

In the present study, Iron-based FeMnAlNi and Cobalt-based CoNiGa shape-memory alloys (SMA) were processed by laser metal deposition for the first time. The materials show susceptibility to cracking upon processing when unheated substrates are employed. Pre-heating of the substrate materials eliminated cracking completely and enabled robust deposition of thin-wall structures. Microstructural analysis using optical microscopy revealed different microstructural evolution for the two materials considered.


2008 ◽  
Vol 591-593 ◽  
pp. 845-848 ◽  
Author(s):  
Bruno C.A. Pinheiro ◽  
J.N.F. Holanda

In this work is done a study on the sintered microstructure of ceramic tile paste incorporated with petroleum waste. The raw materials used were kaolin, sodic feldspar, quartz and petroleum waste. The ceramic tiles containing up to 5 wt% petroleum waste were prepared by uniaxial pressing and sintered at 1200°C. The microstructural evolution was examined by SEM. In addition, water absorption, linear shrinkage, and sintered density were determined. The results showed that the microstructure of the ceramic tiles is influenced by the added petroleum waste.


2020 ◽  
Author(s):  
Nicolas Beaudoin ◽  
Aurélie Labeur ◽  
Olivier Lacombe ◽  
Guilhem Hoareau ◽  
Marta Marchegiano ◽  
...  

<p>Faults, joints and stylolites are ubiquitous features in fold-and-thrust belts, and have been used for decades to reconstruct the past fluid flow (or plumbing system) at the scale of folded reservoirs/basins. The textural and geochemical study of the minerals filling the fractures makes it possible to unravel the history of fluid flow in an orogen, when combined with a knowledge of the burial history and/or of the paleothermal gradient. In most cases, the latter derives from the former, itself often argued over, limiting the interpretations of past fluid temperatures. Yet, recent methodological developments applied to carbonates and calcite fillings provide new perspectives for a more accurate reconstruction of the temperature, pressure and timing of the fluids that were present in the strata at the time they deformed, at every stage of fold development. Indeed, the temperature at which fluids precipitated can be obtained by Δ<sup>47</sup>CO2 clumped isotopes while the timing of calcite precipitation in veins and faults is given by U-Pb absolute dating. Also, the maximum burial depth of strata before contraction can be estimated using sedimentary stylolite paleopiezometry, hence in a way free of any consideration about the geothermal gradient.<br><br>These techniques were jointly applied at the scale of the Umbria-Marches arcuate belt (UMAR, Northen Apennines, Italy). Mesoscale faults and vein sets were measured and sampled in the Cretaceous-Eocene rocks. Focusing on those fractures that developed during Layer Parallel Shortening (LPS, i.e. oriented NE-SW to E-W) and during folding (i.e. oriented parallel to local fold axis), paleofluid sources, temperatures and timing were reconstructed using U-Pb absolute dating, Δ<sup>47</sup>CO2 clumped isotopes as well as δ<sup>18</sup>O, δ<sup>13</sup>C, and <sup>87/86</sup>Sr signatures of calcite veins. Results show a regional divide in the fluid system, with most of the belt including the foreland recording a fluid system involving basinal brines resulting at various degree from fluid-rock interactions (FRI) between pristine marine fluids (δ<sup>18</sup>O<sub>fluid</sub><span>= 0‰ SMOW) and surrounding limestones (δ<sup>18</sup>O<sub>fluid</sub>= 10‰ SMOW). Precipitation temperatures (35°C to 75°C) appear consistent with the burial history unraveled by sedimentary stylolite roughness paleopiezometry (600 m to 1500m in the range) and estimated geothermal gradient (23°C/km, Caricchi et al., 2004). As the degree of FRI increases forelandward, we propose a lateral, strata-bound, squeegee-type migration of fluids during folding and thrusting. In the western hinterland however, the fluid system rather involves hydrothermal fluids with a higher degree of FRI, the corresponding precipitation temperatures (100°C to 130°C) of which are inconsistent with local maximum burial (1500m). As the Sr radiogenic signatures preclude any deep origin of the fluids, we propose that the fluid system prevailing in the hinterland during LPS reflects the eastward migration of formational fluids originating from the Tuscan basin, located west from the UMAR, where studied Cretaceous rocks were buried under more than 4 km of sediments during the Miocene.</span></p><p><br>Beyond being the first combination of paleofluid geochemistry and burial estimates through paleopiezometry, this fluid flow model illustrates how the large scale structures may control the fluid system at the scale of a mountain belt.</p>


Geology ◽  
2020 ◽  
Vol 49 (3) ◽  
pp. 335-340
Author(s):  
N. Rochelle-Bates ◽  
N.M.W. Roberts ◽  
I. Sharp ◽  
U. Freitag ◽  
K. Verwer ◽  
...  

Abstract In volcanic rifted margins, the timing of hydrocarbon charge is difficult to predict, but is important in understanding fluid genesis. We investigated whether igneous activity was linked to hydrocarbon charge in the prolific South Atlantic pre-salt petroleum system. To do this, we applied in situ carbonate U-Pb geochronology, a relatively novel tool for dating hydrocarbon migration, to bituminous veins in pre-salt travertines from the rifted onshore Namibe Basin (Angola). To test if fluid flow was synchronous with known volcanic pulses, we also obtained new 40Ar/39Ar geochronology from a nearby volcanic complex. Bitumen is associated with calcite in a first generation of veins and vugs, and with dolomite in younger veins. The dated calcite veins yielded a pooled U-Pb age of 86.2 ± 2.4 Ma, which overlaps the volcanism 40Ar/39Ar age of 89.9 ± 1.8 Ma. The overlapping dates and the localized bitumen occurrence around the dated volcanic center show a clear genetic relationship between Late Cretaceous igneous activity and hydrocarbon charge. The dolomite was dated at 56.8 ± 4.8 Ma, revealing a previously unknown Paleocene/Eocene fluid-flow phase in the basin.


Geology ◽  
2019 ◽  
Vol 48 (1) ◽  
pp. 56-61 ◽  
Author(s):  
Sally J. Watson ◽  
Joshu J. Mountjoy ◽  
Philip M. Barnes ◽  
Gareth J. Crutchley ◽  
Geoffroy Lamarche ◽  
...  

Abstract Hydrogeological processes influence the morphology, mechanical behavior, and evolution of subduction margins. Fluid supply, release, migration, and drainage control fluid pressure and collectively govern the stress state, which varies between accretionary and nonaccretionary systems. We compiled over a decade of published and unpublished acoustic data sets and seafloor observations to analyze the distribution of focused fluid expulsion along the Hikurangi margin, New Zealand. The spatial coverage and quality of our data are exceptional for subduction margins globally. We found that focused fluid seepage is widespread and varies south to north with changes in subduction setting, including: wedge morphology, convergence rate, seafloor roughness, and sediment thickness on the incoming Pacific plate. Overall, focused seepage manifests most commonly above the deforming backstop, is common on thrust ridges, and is largely absent from the frontal wedge despite ubiquitous hydrate occurrences. Focused seepage distribution may reflect spatial differences in shallow permeability architecture, while diffusive fluid flow and seepage at scales below detection limits are also likely. From the spatial coincidence of fluids with major thrust faults that disrupt gas hydrate stability, we surmise that focused seepage distribution may also reflect deeper drainage of the forearc, with implications for pore-pressure regime, fault mechanics, and critical wedge stability and morphology. Because a range of subduction styles is represented by 800 km of along-strike variability, our results may have implications for understanding subduction fluid flow and seepage globally.


Sign in / Sign up

Export Citation Format

Share Document