2D quantitative analysis of fractures from high-resolution photos for the geomechanical characterization of rock masses

Author(s):  
Emmanuel Wyser ◽  
Lidia Loiotine ◽  
Charlotte Wolff ◽  
Gioacchino Francesco Andriani ◽  
Michel Jaboyedoff ◽  
...  

<p>The identification of discontinuity sets and their properties is among the key factors for the geomechanical characterization of rock masses, which is fundamental for performing stability analyses, and for planning prevention and mitigation measures as well.<br>In practice, discontinuity data are collected throughout difficult and time-consuming field surveys, especially when dealing with areas of wide extension, difficult accessibility, covered by dense vegetation, or with adverse weather conditions. Consequently, even experienced operators may introduce sampling errors or misinterpretations, leading to biased geomechanical models for the investigated rock mass.<br>In the last decades, new remote techniques such as photogrammetry,<em> Light Detection and Ranging</em> (LiDAR), <em>Unmanned Aerial Vehicle</em> (UAV) and <em>InfraRed Thermography </em>(IRT) have been introduced to overcome the limits of conventional surveys. We propose here a new tool for extracting information on the fracture pattern in rock masses, based on <em>remote sensing </em>methods, with particular reference to the analysis of high-resolution georeferenced photos. The first step consists in applying the <em>Structure from Motion</em> (SfM) technique on photos acquired by means of digital cameras and UAV techniques. Once aligned and georeferenced, the orthophotos are exported in a GIS software, to draw the fracture traces at an appropriate scale. We developed a MATLAB routine to extract information on the geostructural setting of rock masses by performing a quantitative 2D analysis of the fracture traces, based on formulas reported in the literature. The code was written by testing few experimental and simple traces and was successively validated on an orthophoto from a real case study.<br>Currently, the script plots the fracture traces as polylines and calculates their orientation (strike) and length. Subsequently, it detects the main discontinuity sets by fitting an experimental composite Gaussian curve on histograms showing the number of discontinuities according to their orientation, and splitting the curve in simpler Gaussian curves, with peaks corresponding to the main discontinuity sets.<br>Then, for each set, a linear scanline intersecting the highest number of traces is plotted, and the apparent and real spacing are calculated. In a second step, a grid of circular scanlines covering the whole area where the traces are located is plotted, and the mean trace intensity, trace density and trace length estimators are calculated.<br>It is expected to test the presented tools on other case studies, in order to optimize them and calculate additional metrics, such as persistence and block sizes, useful to the geomechanical characterization of rock masses.<br>As a future perspective, a similar approach could be investigated for 3D analyses from point clouds.</p>

2020 ◽  
Vol 10 (8) ◽  
pp. 2960
Author(s):  
Marco Pagano ◽  
Biagio Palma ◽  
Anna Ruocco ◽  
Mario Parise

Stabilization projects of rock masses cannot be performed without a proper geomechanical characterization. The classical approaches, due to logistic issues, typically are not able to cover extensively the areas under study. Geo-structural analysis on point cloud from terrestrial laser scanning and photogrammetry from unmanned aerial vehicles are valid tools for analysis of discontinuity systems. Such methodologies provide reliable data even in complex environmental settings (active cliffs) or at inaccessible sites (excavation fronts in tunnels), offering advantages in terms of both safety of the operators and economic and time issues. We present the implementation of these techniques at a tuff cliff over the Santa Caterina beach (Campania) and at the main entrance of Castellana Caves (Apulia). In the first case study, we also perform an integration of the two techniques. Both sites are of significant tourist and economic value, and present instability conditions common to wide areas of southern Italy: namely, retrogressive evolution of active cliffs along the coast, and instability at the rims of natural and/or artificial sinkholes. The results show the reliability of the data obtained through semi-automatic methods to extract the discontinuity sets from the point clouds, and their agreement with data collected in the field through classical approaches. Advantages and drawbacks of the techniques are illustrated and discussed.


2021 ◽  
Vol 13 (15) ◽  
pp. 2894
Author(s):  
Xiang Wu ◽  
Fengyan Wang ◽  
Mingchang Wang ◽  
Xuqing Zhang ◽  
Qing Wang ◽  
...  

Light detection and ranging (LiDAR) can quickly and accurately obtain 3D point clouds on the surface of rock masses, and on the basis of this, discontinuity information can be extracted automatically. This paper proposes a new method to automatically extract discontinuity information from 3D point clouds on the surface of rock masses. This method first applies the improved K-means algorithm based on the clustering algorithm by fast search and find of density peaks (DPCA) and the silhouette coefficient in the cluster validity index to identify the discontinuity sets of rock masses, and then uses the hierarchical density-based spatial clustering of applications with noise (HDBSCAN) algorithm to segment the discontinuity sets and to extract each discontinuity from a discontinuity set. Finally, the random sampling consistency (RANSAC) method is used to fit the discontinuities and to calculate their parameters. The 3D point clouds of the typical rock slope in the Rockbench repository is used to extract the discontinuity orientations using the new method, and these are compared with the results obtained from the classical approach and the previous automatic methods. The results show that, compared to the results obtained by Riquelme et al. in 2014, the average deviation of the dip direction and dip angle is reduced by 26% and 8%, respectively; compared to the results obtained by Chen et al. in 2016, the average deviation of the dip direction and dip angle is reduced by 39% and 40%, respectively. The method is also applied to an artificial quarry slope, and the average deviation of the dip direction and dip angle is 5.3° and 4.8°, respectively, as compared to the manual method. Furthermore, the related parameters are analyzed. The study shows that the new method is reliable, has a higher precision when identifying rock mass discontinuities, and can be applied to practical engineering.


2020 ◽  
Author(s):  
Lidia Loiotine ◽  
Marco La Salandra ◽  
Gioacchino Francesco Andriani ◽  
Giovanni Barracane ◽  
Marc-Henri Derron ◽  
...  

<p>Improving the methods for the characterization of rock masses by integrating traditional field surveys with remote sensing techniques is fundamental for practical and realistic discontinuous modelling, in order to identify the failures and kinematics, develop landslide susceptibility assessment and plan prevention and mitigation measures.</p><p>A 20 m-high cliff at Polignano a Mare (Southern Italy) was selected as case study for the presence of well-developed discontinuities (bedding and joints) and due to the local morphology, consisting of a valley with opposite slopes at a distance of 150 m, and a pocket beach at their toe. This configuration allowed to perform both traditional and remote sensing surveys. First, photogrammetry methods were carried out on the ground and with the help of a boat. Structure from Motion (SfM) technique was then used to process and combine the pictures, in order to elaborate a raw point cloud of the case study. Secondly, high resolution Terrestrial Laser Scanning (TLS) and Unmanned Aerial Vehicle (UAV) techniques were conducted after positioning Ground Control Points (GCPs) all over the rock mass, with the aim of obtaining a more detailed point cloud. Eventually, a unique and optimized georeferenced point cloud was obtained by combining the previous models, also removing the non-geological objects. Furthermore, Infrared Thermography (IT) was carried out in order to investigate the fracture pattern, the areas of concentrated stress, and the presence of humidity and voids.</p><p>The structural analysis of the rock mass was performed directly on the point cloud, by testing procedures and algorithms for the automatic identification of discontinuity sets and of their orientation, spacing, persistence and roughness.</p><p>The next step of this research will concern the evaluation of the instability mechanisms with the help of kinematic analyses, by means of stereographic projections. Finally, the reliability of the procedure for a complete rock mass characterization, which is expected to be obtained as the final result, will be tested by means of numerical stability solutions, after calibrating the geomechanical model and importing the fracture system in an appropriate software.</p><p> </p>


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
M. José-Yacamán

Electron microscopy is a fundamental tool in materials characterization. In the case of nanostructured materials we are looking for features with a size in the nanometer range. Therefore often the conventional TEM techniques are not enough for characterization of nanophases. High Resolution Electron Microscopy (HREM), is a key technique in order to characterize those materials with a resolution of ~ 1.7A. High resolution studies of metallic nanostructured materials has been also reported in the literature. It is concluded that boundaries in nanophase materials are similar in structure to the regular grain boundaries. That work therefore did not confirm the early hipothesis on the field that grain boundaries in nanostructured materials have a special behavior. We will show in this paper that by a combination of HREM image processing, and image calculations, it is possible to prove that small particles and coalesced grains have a significant surface roughness, as well as large internal strain.


Author(s):  
H. Takaoka ◽  
M. Tomita ◽  
T. Hayashi

High resolution transmission electron microscopy (HRTEM) is the effective technique for characterization of detailed structure of semiconductor materials. Oxygen is one of the important impurities in semiconductors. Detailed structure of highly oxygen doped silicon has not clearly investigated yet. This report describes detailed structure of highly oxygen doped silicon observed by HRTEM. Both samples prepared by Molecular beam epitaxy (MBE) and ion implantation were observed to investigate effects of oxygen concentration and doping methods to the crystal structure.The observed oxygen doped samples were prepared by MBE method in oxygen environment on (111) substrates. Oxygen concentration was about 1021 atoms/cm3. Another sample was silicon of (100) orientation implanted with oxygen ions at an energy of 180 keV. Oxygen concentration of this sample was about 1020 atoms/cm3 Cross-sectional specimens of (011) orientation were prepared by argon ion thinning and were observed by TEM at an accelerating voltage of 400 kV.


Author(s):  
Margaret L. Sattler ◽  
Michael A. O'Keefe

Multilayered materials have been fabricated with such high perfection that individual layers having two atoms deep are possible. Characterization of the interfaces between these multilayers is achieved by high resolution electron microscopy and Figure 1a shows the cross-section of one type of multilayer. The production of such an image with atomically smooth interfaces depends upon certain factors which are not always reliable. For example, diffusion at the interface may produce complex interlayers which are important to the properties of the multilayers but which are difficult to observe. Similarly, anomalous conditions of imaging or of fabrication may occur which produce images having similar traits as the diffusion case above, e.g., imaging on a tilted/bent multilayer sample (Figure 1b) or deposition upon an unaligned substrate (Figure 1c). It is the purpose of this study to simulate the image of the perfect multilayer interface and to compare with simulated images having these anomalies.


Sign in / Sign up

Export Citation Format

Share Document