A comparison of different methods for estimating penetrative strain using natural and synthetic data: A study from the Sikkim Himalaya

Author(s):  
Chirantan Parui ◽  
Kathakali Bhattacharyya

<p>Convergence-related shortening gets primarily accommodated in faults, fault-related folds and penetrative strain in fold thrust belts (FTB). For example, in the Himalayan FTB, ~477-919 km minimum orogen-scale shortening is accommodated by a series of folded, south vergent thrust systems that vary laterally in their geometry resulting in laterally varying shortening distribution. From hinterland to foreland, these major thrust faults are the Main Central thrust, the Pelling-Munsiari thrust, the Lesser Himalayan duplex, the Main Boundary thrust, and the Main Frontal thrust. In the Sikkim Himalayan FTB, the structural geometry of these thrust sheets laterally varies over ~15 km. Based on two regional, transport-parallel balanced cross-sections, ~542-589 km minimum wedge-scale shortening has been estimated. To quantify grain-scale shortening, we analyzed 201 thin-sections cut from 96 quartz-rich samples (sandstone, quartzite, phyllite, schist, and gneiss) and calculated penetrative strain from them. Penetrative strain results indicate that ~25-26% of total Himalayan shortening is recorded at the grain-scale in this section of the eastern Himalaya.</p><p>In the internal thrust sheets, the strain magnitude (R<sub>S</sub>) remains higher (~1.4-2.43 ), and it progressively decreases in the frontal thrust sheets (~1.08-1.51). The normalized Fry and the R<sub>f</sub>-φ are the two most commonly used graphical methods to estimate best-fit strain ellipse parameters, i.e., R<sub>S</sub> and φ (long-axis orientation). However, in thrust sheets with less deformed sandstones, where initial grain shapes were not spherical, these graphical methods do not accurately estimate the best-fit strain ellipse parameters. The central vacancy in the Fry plot was objectively fitted using the enhanced normalized Fry (ENFRY), the point-count density (PCD), the continuous function method (CFM), and weighted least square (WLS) methods. From the R<sub>f</sub>-φ data, we calculated the best-fit strain ellipse using the shape matrix eigenvector (SME), centroids of the hyperbolic plot (HP), Elliot’s polar graph (EPG), and R<sub>f</sub>-φ graph, harmonic mean (HM) and vector mean (VM) methods. In this study, we calculate the accuracy of these strain methods as a function of the strain magnitude and structural position within the orogenic wedge. The SME and HP methods record the lowest bootstrap errors in the strain parameters in the internal thrust sheets. In contrast, R<sub>S</sub> and φ values estimated by the WLS method records the lowest bootstrap error in the frontal thrust sheets, followed by the SME, HP, and EPG methods. We also created six synthetic aggregates containing 150-170 random elliptical grains with random long-axis orientations. We deformed these aggregates under pure-shear, simple-shear, and general-shear conditions at various strain increments. We have generated 7560 strain data. To understand the accuracy of these strain methods in estimating penetrative strain, we calculated the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) for every strain method and every type of deformation. Experimental results indicate that the SME and HP methods record the lowest errors in the R<sub>S</sub> and φ values. In low strain conditions (R<sub>S</sub><1.5), the SME, HP, and EPG methods record lower errors in the strain parameters. Therefore, this study shows that the SME and HP methods overall yield a better penetrative strain estimate.</p>

2021 ◽  
Author(s):  
Jyoti Das ◽  
Kathakali Bhattacharyya

<p>In a fold-thrust belt (FTB), penetrative strain within thrust sheets vary in its magnitude, orientation and type. Addressing variation in magnitude and orientation of strain from major thrust sheets in a FTB, both along the transport direction and along-strike, enable us to understand the complexity of strain partitioning during orogeny. Tectonic windows provide an opportunity to understand the impact of footwall structures on finite strain geometry and orientations of the overlying thrust sheets. In this study, we investigate how penetrative strain is partitioned from the internal to the external major thrust sheets in the Siang window in far-eastern Arunachal Himalayan FTB. We also compare these results with similar thrust sheets from well preserved tectonic windows in the eastern Himalaya, i.e., the Teesta window of the Sikkim and Kuru Chu window of the Bhutan Himalayan FTB.</p><p>We conduct finite strain analysis on quartz grains using R<sub>f</sub>-φ, normalized Fry and Shape Matrix Eigenvector methods. The studied lithologies are gneiss for the internal Pelling-Munsiari-Bomdilla thrust (PT) sheet, while quartzite and sandstone dominantly comprise the external Main Boundary thrust (MBT) and the Main Frontal thrust (MFT) sheets. The rocks north of the PT sheet are not accessible. Results from this study indicate that all the studied rocks record an overall flattening strain. Magnitude of the finite penetrative strain decreases from the internal PT sheet to the external MBT, MFT sheets in the Siang window. The long axes of the finite strain ellipsoids (X) generally have a low plunge and vary in bearing, irrespective of the structural positions of the different thrust sheets. Finite strain ellipses are folded along with the thrust sheets indicating that the penetrative strain developed prior to folding of the thrust sheets. The results also indicate that the footwall structures affect the strain geometry in the interior part of the Himalayan wedge. The grain scale shortening percentage is highest for internal PT sheet and it progressively decreases towards the external MFT sheet. The results indicate greater contribution of thrust-parallel stretch than thrust-perpendicular component, in both internal and external thrust sheets in the Siang window. Preliminary results also suggest that the strain magnitude and grain-scale shortening percentage are the lowest, and orientations of X-axes are more variable with respect to the regional transport direction in the far-eastern Siang window as compared to the other westerly lying regional transects of the Himalayan FTB.</p>


1981 ◽  
Vol 20 (06) ◽  
pp. 274-278
Author(s):  
J. Liniecki ◽  
J. Bialobrzeski ◽  
Ewa Mlodkowska ◽  
M. J. Surma

A concept of a kidney uptake coefficient (UC) of 131I-o-hippurate was developed by analogy from the corresponding kidney clearance of blood plasma in the early period after injection of the hippurate. The UC for each kidney was defined as the count-rate over its ROI at a time shorter than the peak in the renoscintigraphic curve divided by the integral of the count-rate curve over the "blood"-ROI. A procedure for normalization of both curves against each other was also developed. The total kidney clearance of the hippurate was determined from the function of plasma activity concentration vs. time after a single injection; the determinations were made at 5, 10, 15, 20, 30, 45, 60, 75 and 90 min after intravenous administration of 131I-o-hippurate and the best-fit curve was obtained by means of the least-square method. When the UC was related to the absolute value of the clearance a positive linear correlation was found (r = 0.922, ρ > 0.99). Using this regression equation the clearance could be estimated in reverse from the uptake coefficient calculated solely on the basis of the renoscintigraphic curves without blood sampling. The errors of the estimate are compatible with the requirement of a fast appraisal of renal function for purposes of clinical diagknosis.


1992 ◽  
Vol 114 (1) ◽  
pp. 35-41 ◽  
Author(s):  
C. R. Mischke

This is the second paper in a series relating to stochastic methods in mechanical design. The first is entitled, “Some Property Data and Corresponding Weibull Parameters for Stochastic Mechanical Design,” and the third, “Some Stochastic Mechanical Design Applications.” When data are sparse, many investigators prefer employing coordinate transformations to rectify the data string, and a least-square regression to seek the best fit. Such an approach introduces some bias, which the method presented here is intended to reduce. With mass-produced products, extensive testing can be carried out and prototypes built and evaluated. When production is small, material testing may be limited to simple tension tests or perhaps none at all. How should a designer proceed in order to achieve a reliability goal or to assess a design to see if the goal has been realized? The purpose of this paper is to show how sparse strength data can be reduced to distributional parameters with less bias and how such information can be used when designing to a reliability goal.


2019 ◽  
Vol 19 (1) ◽  
pp. 86-92
Author(s):  
M. Owusu ◽  
H. Osei

Appropriate selection of rheological models is important for hydraulic calculations of pressure loss prediction and hole cleaning efficiency of drilling fluids. Power law, Bingham-Plastic and Herschel-Bulkley models are the conventional fluid models used in the oilfield. However, there are other models that have been proposed in literature which are under/or not utilized in the petroleum industry. The primary objective of this paper is to recommend a rheological model that best-fits the rheological behaviour of xanthan gum-based biopolymer drill-in fluids for hydraulic evaluations. Ten rheological models were evaluated in this study. These rheological models have been posed deterministically and due to the unrealistic nature have been replaced by statistical models, by adding an error (disturbance) term and making suitable assumptions about them. Rheological model parameters were estimated by least-square regression method. Models like Sisko and modified Sisko which are not conventional models in oil industry gave a good fit. Modified Sisko model which is a four parameter rheological model was selected as the best-fit model since it produced the least residual mean square of 0.61 Ibf2/100ft4. There is 95% certainty that the true best-fit curve lies within the confidence band of this function of interest. Keywords: Biopolymer; Least-Square Regression; Residual Mean Squares; Rheologram


1977 ◽  
Vol 19 (81) ◽  
pp. 671-672 ◽  
Author(s):  
André Flotron

AbstractIn 1972 the state of a hanging glacier on the Weisshorn gave cause for alarm, as part of it seemed to be accelerating and a repetition of an earlier avalanche of ice seemed possible (see Röthlisberger, previous abstract). For this reason movement surveys were undertaken. The various surveying methods applied on the Weisshorn are outlined and the accuracy of the measurements is given. By least-square analysis different types of curves have been fitted to the data for velocity versus time. The best fit obtained so-far has been with hyperbolae. The confidence of extrapolations from such curves is discussed in relation to forecasts. By evaluating repeated photographs taken by an automatic camera from a single position, using a stereo plotter, the flow pattern has been established at the surface, part of the front, and one of the lateral faces of the ice mass. Changes with time caused by the deformation of the ice mass, the formation of crevasses and the crumbling away of the ice at the edge have been observed.


2016 ◽  
Vol 15 (3) ◽  
pp. 283-289 ◽  
Author(s):  
Manish K. Goyal ◽  
T. S. Kehwar ◽  
Jayanand Manjhi ◽  
Jerry L. Barker ◽  
Bret H. Heintz ◽  
...  

AbstractPurposeThis study evaluated dosimetric parameters for cervical high-dose-rate (HDR) brachytherapy treatment using varying dose prescription methods.MethodsThis study includes 125 tandem-based cervical HDR brachytherapy treatment plans of 25 patients who received HDR brachytherapy. Delineation of high-risk clinical target volumes (HR-CTVs) and organ at risk were done on original computed tomographic images. The dose prescription point was defined as per International Commission in Radiation Units and Measurements Report Number 38 (ICRU-38), also redefined using American Brachytherapy Society (ABS) 2011 criteria. The coverage index (V100) for each HR-CTV was calculated using dose volume histogram parameters. A plot between HR-CTV and V100was plotted using the best-fit linear regression line (least-square fit analysis).ResultsMean prescribed dose to ICRU-38 Point A was 590·47±28·65 cGy, and to ABS Point A was 593·35±30·42 cGy. There was no statistically significant difference between planned ICRU-38 and calculated ABS Point A doses (p=0·23). The plot between HR-CTV and V100is well defined by the best-fit linear regression line with a correlation coefficient of 0·9519.ConclusionFor cervical HDR brachytherapy, dose prescription to an arbitrarily defined point (e.g., Point A) does not provide consistent coverage of HR-CTV. The difference in coverage between two dose prescription approaches increases with increasing CTV. Our ongoing work evaluates the dosimetric consequences of volumetric dose prescription approaches for these patients.


2021 ◽  
Author(s):  
Sara Satolli ◽  
Claudio Robustelli Test ◽  
Elena Zanella ◽  
Dorota Staneczek ◽  
Fernando Calamita ◽  
...  

<p><strong> </strong></p><p>The aim of this study is to investigate how structural deformation in shear zones is documented by the anisotropy of magnetic susceptibility (AMS). The study area is located in the Pliocene outer thrust of the Northern Apennines, which involved Cretaceous to Neogene calcareous and marly rocks. Here, brittle-ductile tectonites show different characteristics along two differently oriented thrust ramps: the NNE-SSW-trending oblique thrust ramp is characterized by the presence of S tectonites, while the NW-SE-trending frontal ramp is characterized by the presence of SC tectonites.</p><p>Samples for AMS fabric investigation were collected on shear zones from three sectors of the belt, at different distance from the main thrust to detect possible magnetic fabric variations. The three study area are characterized by different combinations of simple and pure shear, thus different degree of non-coaxiality, which has been quantified through the vorticity number W<sub>k</sub>.</p><p>Specimens were measured with an AGICO KLY-3 Kappabridge at the CIMaN-ALP Laboratory (Italy) on 15 different directions mode. Only measurements with all three F-statistics of the anisotropy tests higher than 5 were accepted as reliable. Moreover, outliers characterized by ± 2σ difference with respect to the mean value of AMS scalar parameters were excluded from further analysis. In order to distinguish groups of specimens affected by different sedimentary or tectonic processes, we identified clusters of AMS scalar parameters; when clusters were not defined by these parameters, we applied a combination of contouring and cluster analysis on each principal axis to identify different subfabrics.</p><p>The magnetic fabric revealed straightforward correlations with structural data and specific changes of AMS axis orientation depending upon the increasing of deformation (lower vorticity number) and proximity to the main thrust. Similar evolution was detected in different deformation regimes. Overall, the magnetic fabric is more sensitive to the simple shear deformation, as the magnetic lineation tends to parallelize mostly with the computed slip vector; however in pure-shear dominated regimes, the magnetic lineation becomes parallel to the transport direction when the deformation is really intense (sites at less than 15-30 cm from the thrust plane).</p><p>The applied combination of density diagrams and cluster analysis on AMS data successfully allowed discriminating subfabrics related to different events, and shows a great potential to unravel mixed sedimentary and/or tectonic features in magnetic fabrics.</p>


Author(s):  
Eihab M. Fathelrahman ◽  
Khalid A. Hussein ◽  
Safwan Paramban ◽  
Timothy R. Green ◽  
Bruce C. Vandenberg

The United Arab Emirates (UAE) recently witnessed algal/phytoplankton blooms attributed to the high concentrations of Chlorophyll-a associated with the spread and accumulation of a wide range of organisms with toxic effects that influence ecological and fishing economic activities and water desalination along coastal areas.  This research explores the UAE coasts as a case study for the framework presented here. In this research, we argue that advances in satellite remote sensing and imaging of spatial and temporal data offer sufficient information to find the best-fit regression method and relationship between Chlorophyll-a concentration and a set of climatic and biological explanatory variables over time. Three functional forms of regression models were tested and analysed to reveal that the Log-Linear Model found to be the best fit providing the most statistically robust model compared to the Linear and the Generalised Least Square models.  Besides, it is useful to identify the factors Sea Surface temperature, Calcite Concentration, Instantaneous Photosynthetically Available Radiation, Normalized Fluorescence Line Height, and Wind Speed that significantly influence Chlorophyll-a concentration. Research results can be beneficial to aid decision-makers in building a best-fit statistical system and models of algal blooms in the study area. The study found results to be sensitive to the study’s temporal time-period length and the explanatory variables selected for the analysis.


Lithosphere ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 414-435 ◽  
Author(s):  
Subhadip Mandal ◽  
Delores M. Robinson ◽  
Matthew J. Kohn ◽  
Subodha Khanal ◽  
Oindrila Das

Abstract Existing structural models of the Himalayan fold-thrust belt in Kumaun, northwest India, are based on a tectono-stratigraphy that assigns different stratigraphy to the Ramgarh, Berinag, Askot, and Munsiari thrusts and treats the thrusts as separate structures. We reassess the tectono-stratigraphy of Kumaun, based on new and existing U-Pb zircon ages and whole-rock Nd isotopic values, and present a new structural model and deformation history through kinematic analysis using a balanced cross section. This study reveals that the rocks that currently crop out as the Ramgarh, Berinag, Askot, and Munsiari thrust sheets were part of the same, once laterally continuous stratigraphic unit, consisting of Lesser Himalayan Paleoproterozoic granitoids (ca. 1850 Ma) and metasedimentary rocks. These Paleoproterozoic rocks were shortened and duplexed into the Ramgarh-Munsiari thrust sheet and other Paleoproterozoic thrust sheets during Himalayan orogenesis. Our structural model contains a hinterland-dipping duplex that accommodates ∼541–575 km or 79%–80% of minimum shortening between the Main Frontal thrust and South Tibetan Detachment system. By adding in minimum shortening from the Tethyan Himalaya, we estimate a total minimum shortening of ∼674–751 km in the Himalayan fold-thrust belt. The Ramgarh-Munsiari thrust sheet and the Lesser Himalayan duplex are breached by erosion, separating the Paleoproterozoic Lesser Himalayan rocks of the Ramgarh-Munsiari thrust into the isolated, synclinal Almora, Askot, and Chiplakot klippen, where folding of the Ramgarh-Munsiari thrust sheet by the Lesser Himalayan duplex controls preservation of these klippen. The Ramgarh-Munsiari thrust carries the Paleoproterozoic Lesser Himalayan rocks ∼120 km southward from the footwall of the Main Central thrust and exposed them in the hanging wall of the Main Boundary thrust. Our kinematic model demonstrates that propagation of the thrust belt occurred from north to south with minor out-of-sequence thrusting and is consistent with a critical taper model for growth of the Himalayan thrust belt, following emplacement of midcrustal Greater Himalayan rocks. Our revised stratigraphy-based balanced cross section contains ∼120–200 km greater shortening than previously estimated through the Greater, Lesser, and Subhimalayan rocks.


Sign in / Sign up

Export Citation Format

Share Document