Unravelling the thermal state of the southern Central Andes and its controlling factors

Author(s):  
Constanza Rodriguez Piceda ◽  
Magdalena Scheck-Wenderoth ◽  
Judith Bott ◽  
Maria Laura Gomez Dacal ◽  
Michaël Pons ◽  
...  

<p>The Andes represent the modern type area for orogeny at a non-collisional, ocean-continent convergent margin. Subduction geometry, tectonic deformation, and seismicity at this plate boundary are closely related to lithospheric temperature distribution in the upper plate. Despite recent advances in the assessment of the thermal state of the Andean lithosphere and adjacent regions derived from geophysical and geochemical studies, several unknowns remain concerning the 3D temperature configuration at lithospheric scale. In particular, it is not clear how both, the configuration of the continental overriding plate (i.e., its thickness and composition) and the variations of the subduction angle of the oceanic Nazca plate influence thermal processes and deformation in the upper plate. To address this issue, we focus on the southern segment of the Central Andes (SCA, 29°S-39°S), where the Nazca plate changes its subduction angle between 33°S and 35°S from the Chilean-Pampean flat-slab zone (< 5° dip, 27-33°S) in the north to a steeper sector south of 33°S (~30° dip). Additionally, the overriding plate exhibits variations in the crustal geometry and density distribution along- and across-strike of the subduction zone. We derived the 3D lithospheric temperature distribution and the surface heat flow of the SCA from the inversion of S-wave velocity to temperatures and calculations of the steady-state conductive thermal field. The configuration of the region – concerning both, the heterogeneity of the lithosphere and the slab dip – was accounted for by incorporating a 3D data-constrained structural and density model of the SCA into the workflow. We conclude that the generated thermal model allows us to evaluate how mantle thermal anomalies and first-order structural and lithological heterogeneities in the lithosphere, observed across and along-strike of Andean orogen, affect the thermal field of the SCA and thus the propensity of the South American lithosphere to specific styles in deformation. In addition, our results are useful to constrain thermo-mechanical simulations in geodynamic modelling and therefore, contribute to a better understanding of the present-day rheological state of the Andes and adjacent regions.</p>

2021 ◽  
Author(s):  
Constanz Rodriguez Piceda ◽  
Magdalena Scheck-Wenderoth ◽  
Bott Judith ◽  
Maria Laura Gómez Dacal ◽  
Mauro Cacace ◽  
...  

In an ocean-continent subduction zone, the assessment of the lithospheric thermal state is essential to determine the controls of the deformation within the upper plate and the dip angle of the subducting lithosphere. In this study, we evaluate the degree of influence of both the configuration of the upper plate and variations of the subduction angle on the lithospheric thermal field of the southern Central Andes (29°–39°S). Here, the subduction angle increases from subhorizontal (5°) north of 33°S, to steep (~30°) in the south. We derived the 3D temperature and heat flow distribution of the lithosphere in the southern Central Andes considering conversion of S wave tomography to temperatures together with steady-state conductive modeling. We found that the orogen is overall warmer than the forearc and the foreland, and that the lithosphere of the northern part of the foreland appears colder than its southern counterpart. Sedimentary blanketing and the thickness of the radiogenic crust exert the main control on the shallow thermal field (< 50 km depth). Specific conditions are present where the oceanic slab is relatively shallow (< 85 km depth) and the radiogenic crust is thin, This configuration results in relatively colder temperatures compared to regions where the radiogenic crust is thick and the slab is steep. At depths >50 km, the temperatures of the overriding plate are mainly controlled by the mantle heat input and the subduction angle. The thermal field of the upper plate likely preserves the flat subduction angle and influences the spatial distribution of shortening.


2010 ◽  
Vol 23 (14) ◽  
pp. 3761-3791 ◽  
Author(s):  
Ulrike Romatschke ◽  
Robert A. Houze

Abstract Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data are used to indicate mechanisms responsible for extreme summer convection over South America. The three-dimensional reflectivity field is analyzed to define three types of extreme echo, deep convective cores, wide convective cores, and broad stratiform regions. The location and timing of these echoes are sensitive to midlatitude synoptic disturbances crossing the Andes. At the leading edges of these disturbances the nocturnal South American low-level jet (SALLJ) transports moisture along the eastern edge of the Andes from the tropical to the subtropical part of the continent. Where the SALLJ rises over lower but steep mountains on the east side of the southern central Andes, deep and wide convective cores are triggered in the evening. When the SALLJ withdraws to the north as the disturbance passes, nocturnal triggering occurs in the northeastern foothills of the central Andes. Extreme convection over the Amazon basin takes the form of broad stratiform regions that evolve from systems with wide convective cores moving into the center of the region from both the southwest and northeast. The systems from the northeast form at the northeast coast and are likely squall lines. Along the coast of the Brazilian Highlands, diurnal/topographic forcing leads to daytime maxima of deep convective cores followed a few hours later by wide convective cores. Wide convective cores and broad stratiform regions form in the South Atlantic convergence zone (SACZ) with a diurnal cycle related to continental heating.


2020 ◽  
Author(s):  
Michaël Pons ◽  
Stephan Sobolev

&lt;p&gt;&lt;span&gt;The Andean orogeny is a subduction-type orogeny, the oceanic Nazca Plate sinks under the continental South American Plate. While the subduction has been active since ~180 Ma, the shortening of the Andes initiated at ~50 Ma or less.&lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;In a oceanic-continental subduction system, the absolute velocity of the overriding-plate (OP) largely controls the style of subduction (stable, advancing, retreating), the geometry of the slab (dipping angle, curvature) and the style of deformation (shortening or spreading) within the OP. In the case of the Central Peru-Chile subduction, the South American plate is advancing westwards whereas the Nazca plate is anchored into the transition zone (~660 km). As a consequence, the trench is forced to retreat and the Nazca plate to roll-back. The dip of the slab decreases meanwhile the Andes experienced a maximum shortening of ~300 km at ~19-21&amp;#176;S latitudes.&lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;Previous study have shown that the strain localizes within areas of low strength and low gravitational potential of energy. In central Andes, weakening mechanisms of the OP such as lithospheric delamination have intensified the magnitude of tectonic shortening and contributed to formation of the Altiplano-Puna plateau. The deformation between the plateau and the foreland occurs in the form of pure shear or simple shear and is expressed in terms of different tectonic styles in the foreland basin, thick-skinned (e.g the Puna) and thin-skinned (e.g the Altiplano), respectively. Nevertheless, the influence of the strength variations of the OP on the subduction dynamics in the case of the central Andes has been &lt;/span&gt;&lt;span&gt;poorly&lt;/span&gt;&lt;span&gt; explored so far. Our hypothesis is that lateral variations of OP strength result in variable rates of trench roll-back. To test it, we have built 2D high-resolution E-W cross sections along the Altiplano and Puna latitudes (12-27&amp;#176;S) including the subduction of the Nazca plate. For that purpose, we used the FEM geodynamic code ASPECT. Our model includes visco-plastic rheology in addition to gabbro-eclogite phase transition. These preliminary results contribute to the discussion on the nature of the magnitude of shortening in a subduction system. They are also a first step to derive a 3D model of the entire region and to consider additional surface processes such as erosion, transportation and sedimentation. &lt;/span&gt;&lt;/p&gt;


2016 ◽  
Vol 153 (5-6) ◽  
pp. 945-961 ◽  
Author(s):  
JOSÉ F. MESCUA ◽  
LAURA GIAMBIAGI ◽  
MATÍAS BARRIONUEVO ◽  
ANDRÉS TASSARA ◽  
DIEGO MARDONEZ ◽  
...  

AbstractDeformation and uplift in the Andes are a result of the subduction of the Nazca plate below South America. The deformation shows variations in structural style and shortening along and across the strike of the orogen, as a result of the dynamics of the subduction system and the features of the upper plate. In this work, we analyse the development of thin-skinned and thick-skinned fold and thrust belts in the Southern Central Andes (30–36°S). The pre-Andean history of the area determined the formation of different basement domains with distinct lithological compositions, as a result of terrane accretions during Palaeozoic time, the development of a widespread Permo-Triassic magmatic province and long-lasting arc activity. Basin development during Palaeozoic and Mesozoic times produced thick sedimentary successions in different parts of the study area. Based on estimations of strength for the different basement and sedimentary rocks, calculated using geophysical estimates of rock physical properties, we propose that the contrast in strength between basement and cover is the main control on structural style (thin- v. thick-skinned) and across-strike localization of shortening in the study area.


Author(s):  
Hugh Cowan ◽  
Graeme Beattie ◽  
Katherine Hill ◽  
Noel Evans ◽  
Craig McGhie ◽  
...  

The largest earthquake of 2010 by magnitude (MW8.8), and the subject of this article, struck south-central Chile in the early hours of 27 February 2010. The earthquake was a “mega-thrust” event, involving the rupture of a section of the Nazca-South American plate boundary, where the Nazca plate dips at a shallow angle beneath the Pacific margin of South America. Understanding this event and its effects, including tsunami is of particular significance to urban centres that share close proximity to “subduction zones”. These include Seattle, Vancouver, Tokyo and Wellington, together with smaller New Zealand towns of the eastern North Island and upper South Island. The tectonic setting of south-central Chile has similarities to the East Coast of the North Island, and the modern built environment of Chile shares attributes with New Zealand. However, New Zealand has not experienced a large subduction earthquake in the North Island region in at least 200 years, so an understanding of the Chile event and its impact is important for bench-marking of local practices and building resilience. This report summarises the observations of the NZSEE/EQC teams, supplemented by media updates on the Chilean reconstruction experience one year after the earthquake.


2011 ◽  
Vol 289 (1-4) ◽  
pp. 135-149 ◽  
Author(s):  
João C. Duarte ◽  
Filipe M. Rosas ◽  
Pedro Terrinha ◽  
Marc-André Gutscher ◽  
Jacques Malavieille ◽  
...  

2019 ◽  
Vol 60 (10) ◽  
pp. 1991-2024 ◽  
Author(s):  
M G Kopylova ◽  
E Tso ◽  
F Ma ◽  
J Liu ◽  
D G Pearson

Abstract We studied the petrography, mineralogy, thermobarometry and whole-rock chemistry of 120 peridotite and pyroxenite xenoliths collected from the 156–138 Ma Chidliak kimberlite province (Southern Baffin Island). Xenoliths from pipes CH-1, -6, -7 and -44 are divided into two garnet-bearing series, dunites–harzburgites–lherzolites and wehrlites–olivine pyroxenites. Both series show widely varying textures, from coarse to sheared, and textures of late formation of garnet and clinopyroxene. Some samples from the lherzolite series may contain spinel, whereas wehrlites may contain ilmenite. In CH-6, rare coarse samples of the lherzolite and wehrlite series were derived from P = 2·8 to 5·6 GPa, whereas predominant sheared and coarse samples of the lherzolite series coexist at P = 5·6–7·5 GPa. Kimberlites CH-1, -7, -44 sample mainly the deeper mantle, at P = 5·0–7·5 GPa, represented by coarse and sheared lherzolite and wehrlite series. The bulk of the pressure–temperature arrays defines a thermal state compatible with 35–39 mW m–2 surface heat flow, but a significant thermal disequilibrium was evident in the large isobaric thermal scatter, especially at depth, and in the low thermal gradients uncharacteristic of conduction. The whole-rock Si and Mg contents of the Chidliak xenoliths and their mineral chemistry reflect initial high levels of melt depletion typical of cratonic mantle and subsequent refertilization in Ca and Al. Unlike the more orthopyroxene-rich mantle of many other cratons, the Chidliak mantle is rich (∼83 vol%) in forsteritic olivine. We assign this to silicate–carbonate metasomatism, which triggered wehrlitization of the mantle. The Chidliak mantle resembles the Greenlandic part of the North Atlantic Craton, suggesting the former contiguous nature of their lithosphere before subsequent rifting into separate continental fragments. Another, more recent type of mantle metasomatism, which affected the Chidliak mantle, is characterized by elevated Ti in pyroxenes and garnet typical of all rock types from CH-1, -7 and -44. These metasomatic samples are largely absent from the CH-6 xenolith suite. The Ti imprint is most intense in xenoliths derived from depths equivalent to 5·5–6·5 GPa where it is associated with higher strain, the presence of sheared samples of the lherzolite series and higher temperatures varying isobarically by up to 200 °C. The horizontal scale of the thermal-metasomatic imprint is more ambiguous and could be as regional as tens of kilometers or as local as &lt;1 km. The time-scale of this metasomatism relates to a conductive length-scale and could be as short as &lt;1 Myr, shortly predating kimberlite formation. A complex protracted metasomatic history of the North Atlantic Craton reconstructed from Chidliak xenoliths matches emplacement patterns of deep CO2-rich and Ti-rich magmatism around the Labrador Sea prior to the craton rifting. The metasomatism may have played a pivotal role in thinning the North Atlantic Craton lithosphere adjacent to the Labrador Sea from ∼240 km in the Jurassic to ∼65 km in the Paleogene.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiziana Sgroi ◽  
Alina Polonia ◽  
Graziella Barberi ◽  
Andrea Billi ◽  
Luca Gasperini

AbstractThe Calabrian Arc subduction-rollback system along the convergent Africa/Eurasia plate boundary is among the most active geological structures in the Mediterranean Sea. However, its seismogenic behaviour is largely unknown, mostly due to the lack of seismological observations. We studied low-to-moderate magnitude earthquakes recorded by the seismic network onshore, integrated by data from a seafloor observatory (NEMO-SN1), to compute a lithospheric velocity model for the western Ionian Sea, and relocate seismic events along major tectonic structures. Spatial changes in the depth distribution of earthquakes highlight a major lithospheric boundary constituted by the Ionian Fault, which separates two sectors where thickness of the seismogenic layer varies over 40 km. This regional tectonic boundary represents the eastern limit of a domain characterized by thinner lithosphere, arc-orthogonal extension, and transtensional tectonic deformation. Occurrence of a few thrust-type earthquakes in the accretionary wedge may suggest a locked subduction interface in a complex tectonic setting, which involves the interplay between arc-orthogonal extension and plate convergence. We finally note that distribution of earthquakes and associated extensional deformation in the Messina Straits region could be explained by right-lateral displacement along the Ionian Fault. This observation could shed new light on proposed mechanisms for the 1908 Messina earthquake.


2021 ◽  
Vol 31 (2) ◽  
pp. 247-263
Author(s):  
Jonathan J. Dubois

This paper introduces a new art style, Singa Transitional, found painted onto a mountainside near the modern town of Singa in the north of Huánuco, Peru. This style was discovered during a recent regional survey of rock art in the Huánuco region that resulted in the documentation of paintings at more than 20 sites, the identification of their chronological contexts and an analysis of the resulting data for trends in changing social practices over nine millennia. I explore how the style emerged from both regional artistic trends in the medium and broader patterns evident in Andean material culture from multiple media at the time of its creation. I argue that the presence of Singa Transitional demonstrates that local peoples were engaged in broader social trends unfolding during the transition between the Early Horizon (800–200 bc) and the Early Intermediate Period (ad 0–800) in Peru. I propose that rock art placed in prominent places was considered saywa, a type of landscape feature that marked boundaries in and movement through landscapes. Singa Transitional saywas served to advertise the connection between local Andean people and their land and was a medium through which social changes were contested in the Andes.


2009 ◽  
Vol 19 (1) ◽  
pp. 63-76 ◽  
Author(s):  
BORIS A. TINOCO ◽  
PEDRO X. ASTUDILLO ◽  
STEVEN C. LATTA ◽  
CATHERINE H. GRAHAM

SummaryThe Violet-throated MetaltailMetallura baroniis a high altitude hummingbird endemic to south-central Ecuador currently considered globally ‘Endangered’. Here we present the first detailed assessment of its distribution, ecology and conservation. We first used a maximum entropy model (Maxent model) to create a predicted distribution for this species based on very limited species occurrence data. We used this model to guide field surveys for the species between April and October 2006. We found a positive relationship between model values and species presence, indicating that the model was a useful tool to predict species occurrence and guide exploration. In the sites where the metaltail was found we gathered data on its habitat requirements, food resources and behaviour. Our results indicate that Violet-throated Metaltail is restricted to the Western Cordillera of the Andes Mountains in Azuay and Cañar provinces of Ecuador, with an area of extent of less than 2,000 km2. Deep river canyons to the north and south, lack of suitable habitat, and potential interspecific competition in the east may limit the bird's distribution. The species occurred in three distinct habitats, includingPolylepiswoodland, the upper edge of the montane forest, and in shrubby paramo, but we found no difference in relative abundance among these habitats. The metaltail seems to tolerate moderate human intervention in its habitats as long as some native brushy cover is maintained. We found thatBrachyotumsp.,Berberissp., andBarnadesiasp. were important nectar resources. The ‘Endangered’ status of this species is supported due to its restricted distribution in fragmented habitats which are under increasing human pressures.


Sign in / Sign up

Export Citation Format

Share Document