Coupling large and small ring infiltration experiments for investigating preferential flow

Author(s):  
Laurent Lassabatere ◽  
Simone Di Prima ◽  
Paola Concialdi ◽  
Majdi Abou Najm ◽  
Ryan D. Stewart ◽  
...  

<p>Preferential flow is more the rule than the exception. Water infiltration is often led by preferential flow due to macropores, specific soil structures (e.g., aggregates, macropore networks), or lithological heterogeneity (occurrence of materials with contrasting hydraulic properties). Water infiltration in soils prone to preferential flow strongly depends on soil features below the soil surface, but also the initiation of water infiltration at the surface. When the macropore networks are not dense, with only a few macropores intercepting the soil surface, water infiltration experiments with ring size in the order of 10-15 cm diameter may overlook sampling macropore networks during some infiltration runs, minimizing the effect of macropore flow on the bulk water infiltration at the plot scale.</p><p>In this study, we investigated the effect of ring size on water infiltration into soils prone to preferential flow. We used two ring sizes: small (15 cm in diameter) and large (50 cm in diameter). By doing so, we hypothesized that the large rings, sampling a more representative soil volume, will maximize the probability to intercept and activate a macropore network. In contrast, the small rings may activate the macropore network only occasionally, with other infiltration runs mainly sampling the soil matrix. Thus, the small rings are expected to provide more variable results. On the other hand, the large rings are expected to provide more homogeneous results in line with the soil's bulk infiltration capability, including all pore networks at the plot scale.</p><p>Three different sites were sampled with varying types of preferential flow (macropore-induced versus lithological heterogeneity induced). The experimental plan included inserting large rings at several places in the experimental sites with a dozen small rings nearby to sample the same soil. All the rings were submitted to a similar positive constant water pressure head at the soil surface. The cumulative infiltrations were then monitored and treated with BEST algorithms to get the efficient hydraulic parameters. Note that the cumulative infiltration could not be compared directly since lateral water fluxes varied in extent and geometry between the different ring sizes. The impacts of the ring size on the magnitude of cumulative infiltration and related estimated hydraulic parameters were discussed. Our results demonstrated the impact of ring size but also the dependency of such effect on the site and the type of flow.</p><p>Our results contribute to understanding preferential flow in heterogeneous soils and the complexity of its measure using regular water infiltration devices and protocols.</p>

Biologia ◽  
2015 ◽  
Vol 70 (11) ◽  
Author(s):  
Radka Kodešová ◽  
Karel Němeček ◽  
Anna Žigová ◽  
Antonín Nikodem ◽  
Miroslav Fér

AbstractPlants influence the water regime in soil by both water uptake and an uneven distribution of water infiltration at the soil surface. The latter process is more poorly studied, but it is well known that roots modify soil structure by enhancing aggregation and biopore production. This study used a dye tracer to visualize the impact of plants on water flow in the topsoil of a Greyic Phaeozem. Brilliant blue was ponded to 10 cm height in a 1 m × 1 m frame in the field immediately after harvest of winter wheat (Triticum aestivum L.). After complete infiltration, the staining patterns within the vertical and horizontal field-scale sections were studied. In addition, soil thin sections were made and micromorphological images were used to study soil structure and dye distribution at the microscale. The field-scale sections clearly documented uneven dye penetration into the soil surface, which was influenced by plant presence and in some cases by mechanical compaction of the soil surface. The micromorphological images showed that root activities compress soil and increases the bulk density near the roots (which could be also result of root water uptake and consequent soil adhesion). On the other hand in few cases a preferential flow along the roots was observed.


2008 ◽  
Vol 16 (3) ◽  
pp. 267 ◽  
Author(s):  
K. RASA ◽  
R. HORN ◽  
M. RÄTY

Water repellency (WR) delays soil wetting process, increases preferential flow and may give rise to surface runoff and consequent erosion. WR is commonly recognized in the soils of warm and temperate climates. To explore the occurrence of WR in soils in Finland, soil R index was studied on 12 sites of different soil types. The effects of soil management practice, vegetation age, soil moisture and drying temperature on WR were studied by a mini-infiltrometer with samples from depths of 0-5 and 5-10 cm. All studied sites exhibited WR (R index >1.95) at the time of sampling. WR increased as follows: sand (R = 1.8-5.0) < clay (R = 2.4-10.3) < organic (R = 7.9-undefined). At clay and sand, WR was generally higher at the soil surface and at the older sites (14 yr.), where organic matter is accumulated. Below 41 vol. % water content these mineral soils were water repellent whereas organic soil exhibited WR even at saturation. These results show that soil WR also reduces water infiltration at the prevalent field moisture regime in the soils of boreal climate. The ageing of vegetation increases WR and on the other hand, cultivation reduces or hinders the development of WR.;


2020 ◽  
Author(s):  
Tingzhang Zhou ◽  
Pei Xin ◽  
Jirka Jirka Šimůnek

&lt;p&gt;The occurrence of macropores in salt marsh sediments is a natural and ubiquitous phenomenon. Although they are widely assumed to significantly affect water flow in salt marshes, the effects are not well understood. We conducted physical laboratory experiments and numerical simulations to examine the impact of macropores on soil evaporation. Soil columns packed with either sand or clay and with or without macropores were set up with water tables in the columns set at different levels. A high potential evaporation rate was induced by infrared light and a fan. The results showed that in the soil with a low saturated hydraulic conductivity (and thus a low transport capacity), macropores behaved as preferential flow paths, delivering water from the groundwater towards the soil surface and maintaining a high evaporation rate in comparison with the soil without macropores. This effect was more pronounced for sediments with lower hydraulic conductivities and shallower groundwater tables. These results not only improve our understanding of water flow and soil conditions in salt marshes but also shed light on soil evaporation in other hydrological systems.&lt;/p&gt;


2017 ◽  
Author(s):  
Vincenzo Alagna ◽  
Vincenzo Bagarello ◽  
Simone Di Prima ◽  
Fabio Guaitoli ◽  
Massimo Iovino ◽  
...  

Abstract. In bare soils of semi-arid areas, surface crusting is a rather common phenomenon due to the impact of raindrops. Water infiltration measurements under ponding conditions constitute a common way for an approximate characterization of crusted soils. In this study, the impact of crusting on soil hydraulic conductivity was assessed in a Mediterranean vineyard (western Sicily, Italy) under conventional tillage. The BEST (Beerkan Estimation of Soil Transfer parameters) algorithm was applied to the infiltration data to obtain the hydraulic conductivity of crusted and uncrusted soils. Soil hydraulic conductivity was found to vary during the year and also spatially (i.e., rows vs. inter-rows) due to crusting, tillage and vegetation cover. A 55 mm rainfall event resulted in a decrease of the saturated soil hydraulic conductivity, Ks, by a factor close to two in the inter-row areas, due to the formation of a crusted layer at the surface. The same rainfall event did not determine a Ks reduction in the row areas (i.e., Ks reduced by a non-significant factor of 1.05) because the vegetation cover intercepted the raindrops and therefore prevented alteration of the soil surface. The developed ring insertion methodology on crusted soil, implying pre-moistening through the periphery of the sampled surface, together with the very small insertion depth of the ring (0.01 m) prevented visible fractures. Consequently, beerkan tests carried out along and between the vine-rows and data analysis by the BEST algorithm allowed to assess crusting-dependent reductions in hydraulic conductivity with extemporaneous measurements alone. Testing the beerkan infiltration run in other crusted soils and establishing comparisons with other experimental methodologies appear advisable to increase confidence on the reliability of the method, that seems suitable to allow simple characterization of crusted soils.


2016 ◽  
Vol 47 (6) ◽  
pp. 1172-1181 ◽  
Author(s):  
Dedi Liu ◽  
Yao Xu ◽  
Shenglian Guo ◽  
Pan Liu ◽  
David E. Rheinheimer

Preferential flow is significant for its contribution to rapid response to hydrologic inputs at the soil surface and unsaturated zone flow, which is critical for flow generation in rainfall–runoff (RR) models. In combination with the diffuse and source-responsive flow equations, a new model for water infiltration that incorporates preferential flow is proposed in this paper. Its performance in estimating soil moisture at the catchment scale was tested with observed water content data from the Elder sub-basin of the South Fork Eel River, located in northern California, USA. The case study shows that the new model can improve the accuracy of soil water content simulation even at the catchment scale. The impacts of preferential flow on RR simulation were tested by the Modello Idrologico Semi-Distributio in continuo lumped hydrological model for the Elder River basin. Eleven significant floods events, which were defined as having flood peak magnitudes greater than ten times average discharge during the study period, were employed to assess runoff simulation improvement. The accuracy of the runoff simulation incorporating the preferential flow at the catchment scale improved significantly according to the likelihood ratio test.


2012 ◽  
Vol 8 (1) ◽  
pp. 37-48
Author(s):  
S. Chehaibi ◽  
K. Abrougui ◽  
F. Haouala

The effects of mechanical perforation densities by extracting soil cores through an aerator Vertidrain with a working width of 1.6 m and equipped with hollow tines spaced of 65 mm, were studied on a sandy soil of a grassy sward in the Golf Course El Kantaoui in Sousse (Tunisia). The mechanical aeration was performed at two densities: 250 and 350 holes/m2. The cone penetration resistance and soil water infiltration were measured. These parameters were performed at initial state before aeration (E0) and then on the 10th, 20th and 30th day after aeration. These results showed that perforation density of 350 holes/m2 had a positive effect on the soil by reducing its cone resistance to penetration compared to the initial state (Rp = 14.8 daN/cm2). At 5 cm depth the decrease in resistance to penetration was 34% and 43% on the 10th and 20th day after aeration, respectively. However, on the 30th day after aeration the soil resistance to penetration tended to grow and its value compared to the initial state decreased only by 21 and 26%, respectively, at 5 and 15 cm of depth only by 10% and 9% with 250 holes/m2 density. The soil water infiltration made a good improvement after aeration compared to the initial state. This parameter increased from 4.8 cm/h to 8.3, 10.9 and 13.1 cm/h with 250 holes/m2 density and to 10, 12.9 and 14.8 cm/h with 350 holes/m2 density on the 10th, 20th and 30th day following the aeration.


Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2015
Author(s):  
Iwona Jaskulska ◽  
Kestutis Romaneckas ◽  
Dariusz Jaskulski ◽  
Piotr Wojewódzki

Conservation agriculture has three main pillars, i.e., minimum tillage, permanent soil cover, and crop rotation. Covering the soil surface with plant residues and minimum mechanical soil disturbance can all result from introducing a strip-till one-pass (ST-OP) system. The aim of this study was to determine the impact of the ST-OP technology on the management of plant residues, soil properties, inputs, and emissions related to crop cultivation. We compared the effect of a ST-OP system against conventional tillage (CT) using a plough, and against reduced, non-ploughing tillage (RT). Four field experiments were conducted for evaluating the covering of soil with plant residues of the previous crop, soil loss on a slope exposed to surface soil runoff, soil structure and aggregate stability, occurrence of soil organisms and glomalin content, soil moisture and soil water reserve during plant sowing, labour and fuel inputs, and CO2 emissions. After sowing plants using ST-OP, 62.7–82.0% of plant residues remained on the soil surface, depending on the previous crop and row spacing. As compared with CT, the ST-OP system increased the stability of soil aggregates of 0.25–2.0 mm diameter by 12.7%, glomalin content by 0.08 g·kg−1, weight of earthworms five-fold, bacteria and fungi counts, and moisture content in the soil; meanwhile, it decreased soil loss by 2.57–6.36 t·ha−1 year−1, labour input by 114–152 min·ha−1, fuel consumption by 35.9–45.8 l·ha−1, and CO2 emissions by 98.7–125.9 kg·ha−1. Significant favourable changes, as compared with reduced tillage (RT), were also found with respect to the stability index of aggregates of 2.0–10.0 mm diameter, the number and weight of earthworms, as well as bacteria and fungi counts.


2011 ◽  
Vol 183-185 ◽  
pp. 1190-1194
Author(s):  
Jun Ke Zhang ◽  
Qing Ju Hao ◽  
Chang Sheng Jiang ◽  
Yan Wu

The impact of conservation tillage practices on carbon sequestration has been of great interest in recent years. This experiment analyzed the organic carbon status of soils sampled at depth increments from 0 to 60 cm after 20 years in a purple paddy soil. The tillage experiment was established in the Key Field Station for Monitoring of Eco-Environment of Purple Soil of the Ministry of Agriculture of China, located in the farm of Southwest University (30°26′N, 106°26′E), Chongqing. In this paper, five tillage treatments including conventional tillage with rice only system (DP), conventional tillage with rotation of rice and rape system (SL), no-till and ridge culture with rotation of rice and rape system (LM), no-till and plain culture with rotation of rice and rape system (XM) and tillage and ridge culture with rotation of rice and rape system (LF) were selected as research objectives to measure SOC storage and stratification ratio of SOC (CSR). The SOC storage under different tillage systems was calculated based on an equivalent soil mass. The CSR can be used as an indicator of soil quality because surface organic matter is essential to erosion control, water infiltration, and the conservation of nutrients. Results showed that in soil under no-till SOC was concentrated near the surface, while in tilled soil SOC decreased equably with the increase of soil depth. The difference of SOC contents between the five tillage systems was the largest in the top soil and the lowest in the bottom soil. The order of SOC storage was LM (158.52 Mg C•ha-1) >DP (106.74 Mg C•ha-1) >XM (100.11 Mg C•ha-1) >LF (93.11 Mg C•ha-1) >SL (88.59 Mg C•ha-1), LM treatment was significantly higher than the other treatments. The CSR of 0-10/50-60 cm was 2.65, 2.70 and 2.14 under LM, XM and LF treatments, while 1.54 and 1.92 under DP and SL treatments. We considered CSR>2 indicate an improvement in soil quality produced by changing from tillage to no-tillage, as well as changing from plane to ridge. Overall, long-term LM treatment is a valid strategy for increasing SOC storage and improving soil quality in a purple paddy soil in Southwest China.


Sign in / Sign up

Export Citation Format

Share Document