Thermophysical model of the Moon from 3.7 to 15 μm

2020 ◽  
Author(s):  
Thomas G. Müller ◽  
Martin J. Burgdorf ◽  
Stefan A. Buehler ◽  
Marc Prange

<p>We present a thermophysical model (TPM) of the Moon which matches the observed, global, disk-integrated thermal flux densities of the Moon in the mid-infrared wavelength range for a phase angle range from -90° to +90°.<br />The model was tested and verified against serendipitous multi-channel HIRS measurements of the Moon obtained by different meteorological satellites (NOAA-11, NOAA-14, NOAA-15, NOAA-17, NOAA-18, NOAA-19, MetOp-A, MetOp-B). The sporadic intrusions of the Moon in the deep space view of these instruments have been extracted in cases where the entire Moon was within the instruments' field of view. The HIRS long-wavelengths channels 1-12 cover the range from 6.5 to 15 μm, the short-wavelengths channels 13-19 are in the 3.7 to 4.6 μm range.</p> <p>The model is based on an asteroid TPM concept (Lagerros 1996, 1997, 1998; Müller & Lagerros 1998, 2002), using the known global properties of the Moon (like size, shape, spin properties, geometric albedo, thermal inertia, surface roughness, see Keihm 1984; Racca 1995; Rozitis & Green 2011; Hayne et al. 2017), combined with a model for the spectral hemispherical emissivity which varies between 0.6 and 1.0 in the HIRS wavelength range (Shaw 1998; ECOSTRESS data base: https://ecostress.jpl.nasa.gov/). The spectral emissivity as well as characteristics of the surface roughness are crucial to explain the well-calibrated measurements.</p> <p>Our Moon model fits the flux densities for the currently available 22 epochs (each time up to 19 channels) with an absolute accuracy of 5-10%. The phase curves at the different wavelengths are well explained. The spectral energy distributions are very sensitive to emissivity and roughness properties. Here, we see minor variations in the model fits, depending on the origin (phase and aspect angle related) of the thermal emission. We also investigated the influence of reflected sunlight at short wavelengths.</p> <p>Our TPM of the Moon has a wide range of applications: (i) for Earth-observing weather satellites in the context of field of view and photometric calibration (e.g., Burgdorf et al. 2020); (ii) for interplanetary space missions (e.g., Hayabusa2, OSIRIS-REx or BepiColombo) with infrared instruments on board for an in-space characterization of instrument properites (e.g., Okada et al. 2018); (iii) to shed light on the thermal mid-infrared properties of the lunar surface on a global scale; and, (iv) to benchmark thermophysical model techniques for asteroids in the regime below 10 μm (e.g., observed by WISE in the W1 and W2 bands at 3.4 and 4.6 μm, by Spitzer-IRAC at 3.55 and 4.49 μm or from ground in M band at around 5 μm).</p> <p><br />References:<br />Burgdorf M., et al. 2020, Remote Sens. 12, 1488; Hayne, P. et al. 2017, JGRE 122, 237; Keihm, S.J. 1984, Icarus 60, 568; Lagerros 1996,  A&A 310, 1011; Lagerros 1997, A&A 325, 1226; Lagerros 1998, A&A 332, 1123; Müller & Lagerros 1998, A&A 338, 340; Müller & Lagerros 2002, A&A 381, 324; Okada T. et al. 2018, P&SS 158, 46; Racca G. 1995, P&SS 43, 835; Rozitis & Green 2011, MNRAS 415, 2042.</p> <p> </p>

2020 ◽  
Vol 6 (3) ◽  
pp. 522-525
Author(s):  
Dorina Hasselbeck ◽  
Max B. Schäfer ◽  
Kent W. Stewart ◽  
Peter P. Pott

AbstractMicroscopy enables fast and effective diagnostics. However, in resource-limited regions microscopy is not accessible to everyone. Smartphone-based low-cost microscopes could be a powerful tool for diagnostic and educational purposes. In this paper, the imaging quality of a smartphone-based microscope with four different optical parameters is presented and a systematic overview of the resulting diagnostic applications is given. With the chosen configuration, aiming for a reasonable trade-off, an average resolution of 1.23 μm and a field of view of 1.12 mm2 was achieved. This enables a wide range of diagnostic applications such as the diagnosis of Malaria and other parasitic diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michał Dudek ◽  
Rafał Kowerdziej ◽  
Alessandro Pianelli ◽  
Janusz Parka

AbstractGraphene-based hyperbolic metamaterials provide a unique scaffold for designing nanophotonic devices with active functionalities. In this work, we have theoretically demonstrated that the characteristics of a polarization-dependent tunable hyperbolic microcavity in the mid-infrared frequencies could be realized by modulating the thickness of the dielectric layers, and thus breaking periodicity in a graphene-based hyperbolic metamaterial stack. Transmission of the tunable microcavity shows a Fabry–Perot resonant mode with a Q-factor > 20, and a sixfold local enhancement of electric field intensity. It was found that by varying the gating voltage of graphene from 2 to 8 V, the device could be self-regulated with respect to both the intensity (up to 30%) and spectrum (up to 2.1 µm). In addition, the switching of the device was considered over a wide range of incident angles for both the transverse electric and transverse magnetic modes. Finally, numerical analysis indicated that a topological transition between elliptic and type II hyperbolic dispersion could be actively switched. The proposed scheme represents a remarkably versatile platform for the mid-infrared wave manipulation and may find applications in many multi-functional architectures, including ultra-sensitive filters, low-threshold lasers, and photonic chips.


2005 ◽  
Vol 483-485 ◽  
pp. 765-768 ◽  
Author(s):  
Jun Hai Xia ◽  
E. Rusli ◽  
R. Gopalakrishnan ◽  
S.F. Choy ◽  
Chin Che Tin ◽  
...  

Reactive ion etching of SiC induced surface damage, e.g., micromasking effect induced coarse and textured surface, is one of the main concerns in the fabrication of SiC based power devices [1]. Based on CHF3 + O2 plasma, 4H-SiC was etched under a wide range of RF power. Extreme coarse and textured etched surfaces were observed under certain etching conditions. A super-linear relationship was found between the surface roughness and RF power when the latter was varied from 40 to 160 W. A further increase in the RF power to 200 W caused the surface roughness to drop abruptly from its maximum value of 182.4 nm to its minimum value of 1.3 nm. Auger electron spectroscopy (AES) results revealed that besides the Al micromasking effect, the carbon residue that formed a carbon-rich layer, could also play a significant role in affecting the surface roughness. Based on the AES results, an alternative explanation on the origin of the coarse surface is proposed.


2012 ◽  
Vol 717-720 ◽  
pp. 1101-1104 ◽  
Author(s):  
M.G. Jaikumar ◽  
Shreepad Karmalkar

4H-Silicon Carbide VDMOSFET is simulated using the Sentaurus TCAD package of Synopsys. The simulator is calibrated against measured data for a wide range of bias conditions and temperature. Material parameters of 4H-SiC are taken from literature and used in the available silicon models of the simulator. The empirical parameters are adjusted to get a good fit between the simulated curves and measured data. The simulation incorporates the bias and temperature dependence of important physical mechanisms like interface trap density, coulombic interface trap scattering, surface roughness scattering and velocity saturation.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Wei Pu ◽  
Dong Zhu ◽  
Jiaxu Wang

In this study, a modified mixed lubrication model is developed with consideration of machined surface roughness, arbitrary entraining velocity angle, starvation, and cavitation. Model validation is executed by means of comparison between the obtained numerical results and the available starved elastohydrodynamic lubrication (EHL) data found from some previous studies. A comprehensive analysis for the effect of inlet oil supply condition on starvation and cavitation, mixed EHL characteristics, friction and flash temperature in elliptical contacts is conducted in a wide range of operating conditions. In addition, the influence of roughness orientation on film thickness and friction is discussed under different starved lubrication conditions. Obtained results reveal that inlet starvation leads to an obvious reduction of average film thickness and an increase in interasperity cavitation area due to surface roughness, which results in significant increment of asperity contacts, friction, and flash temperature. Besides, the effect of entrainment angle on film thickness will be weakened if the two surfaces operate under starved lubrication condition. Furthermore, the results show that the transverse roughness may yield thicker EHL films and lower friction than the isotropic and longitudinal if starvation is taken into account. Therefore, the starved mixed EHL model can be considered as a useful engineering tool for industrial applications.


2021 ◽  
Vol 21 (10) ◽  
pp. 260
Author(s):  
Cheng Cheng ◽  
Jia-Sheng Huang ◽  
Hai Xu ◽  
Gao-Xiang Jin ◽  
Chuan He ◽  
...  

Abstract The Spitzer Extended Deep Survey (SEDS) as a deep and wide mid-infrared (MIR) survey project provides a sample of 500 000+ sources spreading 1.46 square degree and a depth of 26 AB mag (3σ). Combining with the previous available data, we build a PSF-matched multi-wavelength photometry catalog from u band to 8 μm. We fit the SEDS galaxies spectral energy distributions by the local galaxy templates. The results show that the SEDS galaxy can be fitted well, indicating the high redshift galaxy (z ∼ 1) shares the same templates with the local galaxies. This study would facilitate the further study of the galaxy luminosity and high redshift mass function.


Author(s):  
Johannes Felix Simon Brachmann ◽  
Andreas Baumgartner ◽  
Peter Gege

The Calibration Home Base (CHB) is an optical laboratory designed for the calibration of imaging spectrometers for the VNIR/SWIR wavelength range. Radiometric, spectral and geometric calibration as well as the characterization of sensor signal dependency on polarization are realized in a precise and highly automated fashion. This allows to carry out a wide range of time consuming measurements in an ecient way. The implementation of ISO 9001 standards in all procedures ensures a traceable quality of results. Spectral measurements in the wavelength range 380–1000 nm are performed to a wavelength uncertainty of +- 0.1 nm, while an uncertainty of +-0.2 nm is reached in the wavelength range 1000 – 2500 nm. Geometric measurements are performed at increments of 1.7 µrad across track and 7.6 µrad along track. Radiometric measurements reach an absolute uncertainty of +-3% (k=1). Sensor artifacts, such as caused by stray light will be characterizable and correctable in the near future. For now, the CHB is suitable for the characterization of pushbroom sensors, spectrometers and cameras. However, it is planned to extend the CHBs capabilities in the near future such that snapshot hyperspectral imagers can be characterized as well. The calibration services of the CHB are open to third party customers from research institutes as well as industry.


1970 ◽  
Vol 2 (1) ◽  
Author(s):  
A.K.M.N. Amin, M.A. Rizal, and M. Razman

Machine tool chatter is a dynamic instability of the cutting process. Chatter results in poor part surface finish, damaged cutting tool, and an irritating and unacceptable noise. Exten¬sive research has been undertaken to study the mechanisms of chatter formation. Efforts have been also made to prevent the occurrence of chatter vibration. Even though some progress have been made, fundamental studies on the mechanics of metal cutting are necessary to achieve chatter free operation of CNC machine tools to maintain their smooth operating cycle. The same is also true for Vertical Machining Centres (VMC), which operate at high cutting speeds and are capable of offering high metal removal rates. The present work deals with the effect of work materials, cutting conditions and diameter of end mill cutters on the frequency-amplitude characteristics of chatter and on machined surface roughness. Vibration data were recorded using an experimental rig consisting of KISTLER 3-component dynamometer model 9257B, amplifier, scope meters and a PC.  Three different types of vibrations were observed. The first type was a low frequency vibration, associated with the interrupted nature of end mill operation. The second type of vibration was associated with the instability of the chip formation process and the third type was due to chatter. The frequency of the last type remained practically unchanged over a wide range of cutting speed.  It was further observed that chip-tool contact processes had considerable effect on the roughness of the machined surface.Key Words: Chatter, Cutting Conditions, Stable Cutting, Surface Roughness.


2001 ◽  
Vol 19 (2) ◽  
pp. 285-293 ◽  
Author(s):  
T.A. PIKUZ ◽  
A. YA. FAENOV ◽  
M. FRAENKEL ◽  
A. ZIGLER ◽  
F. FLORA ◽  
...  

The shadow monochromatic backlighting (SMB) scheme, a modification of the well-known soft X-ray monochromatic backlighting scheme, is proposed. It is based on a spherical crystal as the dispersive element and extends the traditional scheme by allowing one to work with a wide range of Bragg angles and thus in a wide spectral range. The advantages of the new scheme are demonstrated experimentally and supported numerically by ray-tracing simulations. In the experiments, the X-ray backlighter source is a laser-produced plasma, created by the interaction of an ultrashort pulse, Ti:Sapphire laser (120 fs, 3–5 mJ, 1016 W/cm2 on target) or a short wavelength XeCl laser (10 ns, 1–2 J, 1013 W/cm2 on target) with various solid targets (Dy, Ni + Cr, BaF2). In both experiments, the X-ray sources are well localized spatially (∼20 μm) and are spectrally tunable in a relatively wide wavelength range (λ = 8–15 Å). High quality monochromatic (δλ/λ ∼ 10−5–10−3) images with high spatial resolution (up to ∼4 μm) over a large field of view (a few square millimeters) were obtained. Utilization of spherically bent crystals to obtain high-resolution, large field, monochromatic images in a wide range of Bragg angles (35° < Θ < 90°) is demonstrated for the first time.


Sign in / Sign up

Export Citation Format

Share Document