scholarly journals Characteristics of Energy Dissipation Rate Observed from the High-Frequency Sonic Anemometer at Boseong, South Korea

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 837
Author(s):  
Jeonghoe Kim ◽  
Jung-Hoon Kim ◽  
Robert D. Sharman

The characteristics of low-level turbulence at Boseong, located on the southern coast of South Korea, were investigated in terms of eddy dissipation rate (EDR) using 1-year (2018) of wind data obtained from the Boseong Meteorological Observatory (BMO), a World Meteorological Organization testbed. At BMO, a 307 m tall tower is installed on which four high-frequency (20 Hz) sonic anemometers are mounted at 60, 140, and 300 m above ground level (AGL). In addition, a sonic anemometer at 2.5 m AGL is located to the south of the tower. EDRs are estimated from the wind measurements based on three different EDR estimation methods. The first two methods use the inertial dissipation method derived from Kolmogorov turbulence theory, and the third uses a maximum likelihood estimation assuming a von Kármán spectral model. Reasonable agreement was obtained between the three methods with various fluctuations, including diurnal variations for all seasons, while the EDR calculated from the third method displayed slightly higher EDR values than the other two methods. The result of the analysis showed that the mean (standard deviations) of logarithms of EDR had larger values as height decreased (increased), and the means were higher in the unstable planetary boundary layer (PBL) than in the stable PBL for this heterogeneous location adjacent to the coastlines. The probability density functions (PDFs) of the EDRs showed that the distribution was well-represented by a lognormal distribution in both the stable and unstable PBL, although the PDFs at the lowest level (2.5 m) deviated from those at other levels due to surface effects. Seasonal variations in the PDFs showed that there was less difference in the shape of the PDFs depending on atmospheric stability in the wintertime. Finally, we calculate the 1-yr statistics of the observed EDR, which will be used for future LLT forecast systems in Korea.

2021 ◽  
Author(s):  
Ebba Dellwik ◽  
Poul Hummelshøj ◽  
Gerhard Peters

<p>Sonic anemometers provide point observations of the three-dimensional velocity field at high sampling rates and are crucial instruments for understanding and quantifying the fluxes of momentum, energy and scalars between the atmosphere and Earth’s surface. Since the beginning of sonic anemometry 50 years ago, the characterization of flow distortion, i.e. how the instrument structure alters the flow, has been an ongoing research topic. Multi-path sonic anemometry provides a new opportunity to research and understand flow distortion on the vertical velocity component, since several positions in the small measurement volume can be measured simultaneously. In this work, we use data from a flat terrain measurement campaign in 2020, in which several sonic anemometers were mounted on 4m towers placed 4m apart. The analysis is focused on the Multipath Class-A sonic anemometer (Metek GmbH, Germany), which provides vertical velocity observations from three vertical paths 120 degrees and 0.1m apart. Vertical velocities are also calculated from several combinations of the tilted paths. We investigate how the vertical velocity component is altered depending on wind direction relative to different parts of the instrument structure. We demonstrate that by an optimal combination of the different paths, the vertical velocity variance and fluxes can be significantly enhanced. We also show spectra, and especially look at the high frequency end of the spectrum, where the relative behaviour of the velocity components is known from fundamental turbulence theory. Further, the relative importance of transducer shadowing and pressure-induced blockage effects is discussed.</p>


2020 ◽  
Vol 13 (8) ◽  
pp. 4141-4158 ◽  
Author(s):  
Norman Wildmann ◽  
Eileen Päschke ◽  
Anke Roiger ◽  
Christian Mallaun

Abstract. The retrieval of turbulence parameters with profiling Doppler wind lidars (DWLs) is of high interest for boundary layer meteorology and its applications. DWLs provide wind measurements above the level of meteorological masts while being easier and less expensive to deploy. Velocity-azimuth display (VAD) scans can be used to retrieve the turbulence kinetic energy (TKE) dissipation rate through a fit of measured azimuth structure functions to a theoretical model. At the elevation angle of 35.3∘ it is also possible to derive TKE. Modifications to existing retrieval methods are introduced in this study to reduce errors due to advection and enable retrievals with a low number of scans. Data from two experiments are utilized for validation: first, measurements at the Meteorological Observatory Lindenberg–Richard-Aßmann Observatory (MOL-RAO) are used for the validation of the DWL retrieval with sonic anemometers on a meteorological mast. Second, distributed measurements of three DWLs during the CoMet campaign with two different elevation angles are analyzed. For the first time, the ground-based DWL VAD retrievals of TKE and its dissipation rate are compared to in situ measurements of a research aircraft (here: DLR Cessna Grand Caravan 208B), which allows for measurements of turbulence above the altitudes that are in range for sonic anemometers. From the validation against the sonic anemometers we confirm that lidar measurements can be significantly improved by the introduction of the volume-averaging effect into the retrieval. We introduce a correction for advection in the retrieval that only shows minor reductions in the TKE error for 35.3∘ VAD scans. A significant bias reduction can be achieved with this advection correction for the TKE dissipation rate retrieval from 75∘ VAD scans at the lowest measurement heights. Successive scans at 35.3 and 75∘ from the CoMet campaign are shown to provide TKE dissipation rates with a good correlation of R>0.8 if all corrections are applied. The validation against the research aircraft encourages more targeted validation experiments to better understand and quantify the underestimation of lidar measurements in low-turbulence regimes and altitudes above tower heights.


2021 ◽  
Vol 13 (12) ◽  
pp. 5819-5830
Author(s):  
Xuebo Li ◽  
Yongxiang Huang ◽  
Guohua Wang ◽  
Xiaojing Zheng

Abstract. Partially due to global climate change, sand and dust storms (SDSs) have occurred more and more frequently, yet a detailed measurement of SDS events at different heights is still lacking. Here we provide a high-frequency observation from the Qingtu Lake Observation Array (QLOA), China. The wind and dust information were measured simultaneously at different wall-normal heights during the SDS process. The datasets span the period from 17 March to 9 June 2016. The wind speed and direction are recorded by a sonic anemometer with a sampling frequency of 50 Hz, while particulate matter with a diameter of 10 µm or less (PM10) is sampled simultaneously by a dust monitor with a sampling frequency of 1 Hz. The wall-normal array had 11 sonic anemometers and monitors spaced logarithmically from z=0.9 to 30 m, where the spacing is about 2 m between the sonic anemometer and dust monitor at the same height. Based on its nonstationary feature, an SDS event can be divided into three stages, i.e., ascending, stabilizing and descending stages, in which the dynamic mechanism of the wind and dust fields might be different. This is preliminarily characterized by the classical Fourier power analysis. Temporal evolution of the scaling exponent from Fourier power analysis suggests a value slightly below the classical Kolmogorov value of -5/3 for the three-dimensional homogeneous and isotropic turbulence. During the stabilizing stage, the collected PM10 shows a very intermittent pattern, which can be further linked with the burst events in the turbulent atmospheric boundary layer. This dataset is valuable for a better understanding of SDS dynamics and is publicly available in a Zenodo repository at https://doi.org/10.5281/zenodo.5034196 (Li et al., 2021a).


2021 ◽  
Author(s):  
Bernardo Figueroa-Espinoza ◽  
Zulia Sánchez-Mejía ◽  
Jorge Maximiliano Uuh-Sonda ◽  
Paulo Salles ◽  
Luis Méndez-Barroso ◽  
...  

Friction velocity (u*) is an important velocity scale used in the study of engineering and geophysical flows. The widespread use of 2D sonic anemometers in modern meteorological stations makes the estimation of u* from just the horizontal components of the velocity a very attractive possibility. The presence of different wind regimes (such as sea breezes in or near coastal zones) cause the turbulent parameters to be dependent on the wind direction. Additionally, u* depends on atmospheric stability. This makes the estimation of u* from 2D measurements very difficult. A simple expression is proposed, and then tested with data from six independent experiments located in coastal zones. The results show that it is possible to estimate friction velocity from 2D measurements using the turbulence Intensity as a proxy for u*, reducing substantially the sensitivity to the wind direction or atmospheric stability, with small root mean squared errors (0.06<RMSE<0.097) and high correlation coefficients (0.77< r2<0.95).


2018 ◽  
Vol 11 (7) ◽  
pp. 4291-4308 ◽  
Author(s):  
Nicola Bodini ◽  
Julie K. Lundquist ◽  
Rob K. Newsom

Abstract. Despite turbulence being a fundamental transport process in the boundary layer, the capability of current numerical models to represent it is undermined by the limits of the adopted assumptions, notably that of local equilibrium. Here we leverage the potential of extensive observations in determining the variability in turbulence dissipation rate (ϵ). These observations can provide insights towards the understanding of the scales at which the major assumption of local equilibrium between generation and dissipation of turbulence is invalid. Typically, observations of ϵ require time- and labor-intensive measurements from sonic and/or hot-wire anemometers. We explore the capability of wind Doppler lidars to provide measurements of ϵ. We refine and extend an existing method to accommodate different atmospheric stability conditions. To validate our approach, we estimate ϵ from four wind Doppler lidars during the 3-month XPIA campaign at the Boulder Atmospheric Observatory (Colorado), and we assess the uncertainty of the proposed method by data intercomparison with sonic anemometer measurements of ϵ. Our analysis of this extensive dataset provides understanding of the climatology of turbulence dissipation over the course of the campaign. Further, the variability in ϵ with atmospheric stability, height, and wind speed is also assessed. Finally, we present how ϵ increases as nocturnal turbulence is generated during low-level jet events.


2018 ◽  
Author(s):  
Nicola Bodini ◽  
Julie K. Lundquist ◽  
Rob K. Newsom

Abstract. Despite turbulence being a fundamental transport process in the boundary layer, the capability of current numerical models to represent it is undermined by the limits of the adopted assumptions, notably that of local equilibrium. Here we leverage the potential of extensive observations in determining the variability of turbulence dissipation rate (ε). These observations can provide insights towards the understanding of the scales at which the major assumption of local equilibrium between generation and dissipation of turbulence is invalid. Typically, observations of ε require time- and labor-intensive measurements from sonic and/or hot-wire anemometers. We explore the capability of wind Doppler lidars to provide measurements of ε. We refine and extend an existing method to accommodate different atmospheric stability conditions. To validate our approach, we estimate ε from four wind Doppler lidars during the 3-month XPIA campaign at the Boulder Atmospheric Observatory (Colorado), and we assess the uncertainty of the proposed method by data inter-comparison with sonic anemometer measurements of ε. Our analysis of this extensive dataset provides understanding of the climatology of turbulence dissipation over the course of the campaign. Further, the variability of ε with atmospheric stability, height, and wind speed is also assessed. Finally, we present how ε increases as nocturnal turbulence is generated during low-level jet events.


2020 ◽  
Vol 1 (12) ◽  
pp. 40-42
Author(s):  
F. Yu. Daurova ◽  
D. I. Tomaeva ◽  
S. V. Podkopaeva ◽  
Yu. A. Taptun

Relevance: the reason for the development of complications in endodontic treatment is poor-quality instrumental treatment root canals.Aims: a study of the animicrobial action and clinical efficacy of high-frequency monopolar diathermocoagulation in the treatment of chronic forms of pulpitis.Materials and methods: 102 patients with various chronic forms of pulpitis were divided into three groups of 34 patients each. In the first two groups, high-frequency monopolar diathermocoagulation was used in endodontic treatment in different modes. In the third group, endodontic treatment was carried out without the use of diathermocoagulation (comparison group). The root canal microflora in chronic pulpitis in vivo was studied twice-before and after diathermocoagulation.Results: it was established that high-frequency monopolar diathermocoagulation in the effect mode is 3, power is 4 (4.1 W) and effect is 4, power is 4 (5.4 W) with an exposure time of 3 seconds, it has a pronounced antibacterial effect on all presented pathogenic microflora obtained from the root canals of the teeth.


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 117
Author(s):  
Young Hwa Lee ◽  
Rebecca C. Harris ◽  
Hong Won Oh ◽  
Yongho Oh ◽  
Juan C. Vargas-Zambrano ◽  
...  

Vaccine-related errors (VREs) result from mistakes in vaccine preparation, handling, storage, or administration. We aimed to assess physicians’ and nurses’ experiences of VREs in South Korea, focusing on reconstitution issues, and to understand the barriers to and facilitators of preventing them. This was a cross-sectional study using an internet-based survey to examine experiences of reconstitution-related errors, and experience or preference with regard to ready-to-use vaccines (RTU) by physicians and nurses. A total of 700 participants, including 250 physicians and 450 nurses, responded to the questionnaire. In total, 76.4% and 41.5% of the physicians and nurses, respectively, reported an error related to reconstituted vaccines. All errors had been reported as experienced by between 4.9% and 52.0% of physicians or nurses. The errors were reported to occur in more than one in 100 vaccinations for inadequate shaking of vaccines by 28.0% of physicians and 6.9% of nurses, incomplete aspiration of reconstitution vials by 28.0% of physicians and 6.4% of nurses, and spillage or leakage during reconstitution by 20.8% of physicians and 6.9% of nurses. A total of 94.8% of physicians had experience with RTU vaccines, and all preferred RTU formulations. In conclusion, this study highlights the high frequency and types of reconstitution-related errors in South Korea. RTU vaccines could help reduce the time needed for preparation and reduce the risk of errors in South Korea.


Econometrics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 40
Author(s):  
Erhard Reschenhofer ◽  
Manveer K. Mangat

For typical sample sizes occurring in economic and financial applications, the squared bias of estimators for the memory parameter is small relative to the variance. Smoothing is therefore a suitable way to improve the performance in terms of the mean squared error. However, in an analysis of financial high-frequency data, where the estimates are obtained separately for each day and then combined by averaging, the variance decreases with the sample size but the bias remains fixed. This paper proposes a method of smoothing that does not entail an increase in the bias. This method is based on the simultaneous examination of different partitions of the data. An extensive simulation study is carried out to compare it with conventional estimation methods. In this study, the new method outperforms its unsmoothed competitors with respect to the variance and its smoothed competitors with respect to the bias. Using the results of the simulation study for the proper interpretation of the empirical results obtained from a financial high-frequency dataset, we conclude that significant long-range dependencies are present only in the intraday volatility but not in the intraday returns. Finally, the robustness of these findings against daily and weekly periodic patterns is established.


2014 ◽  
Vol 1015 ◽  
pp. 655-658
Author(s):  
Shu Zhen Yu ◽  
Guang Jun Xu ◽  
Han Hua Song ◽  
Xun Zhu ◽  
Wen We Lu ◽  
...  

The electrochemical corrosion of X80 pipeline steel in Xinzhou’s soil with different water content is tested and analyzed. The corrosion signal time and frequency domain figure show that the corrosion signal fluctuates all the time in 30 days’ test with low water content (14%). The slope of high-frequency linear segment in the potential PSD is smaller than it is at the beginning. In the soil with the middle water content (18%), the intense wave motion lasts for 15 days. The noise fluctuation only exists before the third days when in the high water content soil (22%). After the third day, linear drift can be observed but no transient peak. The slope of high-frequency linear segment changes obviously compared with the situation in the beginning. And the high-frequency white noise appears.


Sign in / Sign up

Export Citation Format

Share Document