scholarly journals Generalization and application of the flux-conservative thermodynamic equations in the AROME model of the ALADIN system

2016 ◽  
Author(s):  
D. Degrauwe ◽  
Y. Seity ◽  
F. Bouyssel ◽  
P. Termonia

Abstract. General yet compact equations are presented to express the thermodynamic impact of physical parameterizations in a NWP or climate model. By expressing the equations in a flux-conservative formulation, the conservation of mass and energy is a built-in feature of the system. Moreover, the centralization of all thermodynamic calculations guarantees a consistent thermodynamical treatment of the different processes. The generality of this physics-dynamics interface is illustrated by applying it in the AROME NWP model. The physics-dynamics interface of this model currently makes some approximations, which typically consist of neglecting some terms in the total energy budget, such as the transport of heat by falling precipitation, or the effect of diffusive moisture transport. Although these terms are usually quite small, omitting them from the energy budget breaks the constraint of energy conservation. The presented set of equations allows to get rid of these approximations, in order to arrive at a consistent and energy-conservative model. A verification in an operational setting shows that the impact on monthly-averaged, domain-wide meteorological scores is quite neutral. However, under specific circumstances, the supposedly small terms may turn out not to be entirely negligible. A detailed study of a case with heavy precipitation shows that the heat transport by precipitation contributes to the formation of a region of relatively cold air near the surface, the so-called cold pool. Given the importance of this cold pool mechanism in the life-cycle of convective events, it is advisable not to neglect phenomena that may enhance it.

2016 ◽  
Vol 9 (6) ◽  
pp. 2129-2142 ◽  
Author(s):  
Daan Degrauwe ◽  
Yann Seity ◽  
François Bouyssel ◽  
Piet Termonia

Abstract. General yet compact equations are presented to express the thermodynamic impact of physical parameterizations in a NWP or climate model. By expressing the equations in a flux-conservative formulation, the conservation of mass and energy by the physics parameterizations is a built-in feature of the system. Moreover, the centralization of all thermodynamic calculations guarantees a consistent thermodynamical treatment of the different processes. The generality of this physics–dynamics interface is illustrated by applying it in the AROME NWP model. The physics–dynamics interface of this model currently makes some approximations, which typically consist of neglecting some terms in the total energy budget, such as the transport of heat by falling precipitation, or the effect of diffusive moisture transport. Although these terms are usually quite small, omitting them from the energy budget breaks the constraint of energy conservation. The presented set of equations provides the opportunity to get rid of these approximations, in order to arrive at a consistent and energy-conservative model. A verification in an operational setting shows that the impact on monthly-averaged, domain-wide meteorological scores is quite neutral. However, under specific circumstances, the supposedly small terms may turn out not to be entirely negligible. A detailed study of a case with heavy precipitation shows that the heat transport by precipitation contributes to the formation of a region of relatively cold air near the surface, the so-called cold pool. Given the importance of this cold pool mechanism in the life cycle of convective events, it is advisable not to neglect phenomena that may enhance it.


2020 ◽  
Author(s):  
Christiaan T. van Dalum ◽  
Willem Jan van de Berg ◽  
Michiel R. van den Broeke

Abstract. This study evaluates the impact of a new snow and ice albedo and radiative transfer scheme on the surface mass and energy budget for the Greenland ice sheet in the latest version of the regional climate model RACMO2, version 2.3p3. We also evaluate the modeled (sub)surface temperature and snow melt, as subsurface heating by radiation penetration now occurs. The results are compared to the previous model version and are evaluated against stake measurements and automatic weather station data of the K-transect and PROMICE projects. In addition, subsurface snow temperature profiles are compared at the K-transect, Summit and southeast Greenland. The surface mass balance is in good agreement with observations, and only changes considerably with respect to the previous RACMO2 version around the ice margins and in the percolation zone. Snow melt and refreezing, on the other hand, are changed more substantially in various regions due to the changed albedo representation, subsurface energy absorption and melt water percolation. Internal heating leads to considerably higher snow temperatures in summer, in agreement with observations, and introduces a shallow layer of subsurface melt.


2020 ◽  
Author(s):  
Paul Kim ◽  
Daniel Partridge ◽  
James Haywood

<p>Global climate model (GCM) ensembles still produce a significant spread of estimates for the future of climate change which hinders our ability to influence policymakers. The range of these estimates can only partly be explained by structural differences and varying choice of parameterisation schemes between GCMs. GCM representation of cloud and aerosol processes, more specifically aerosol microphysical properties, remain a key source of uncertainty contributing to the wide spread of climate change estimates. The radiative effect of aerosol is directly linked to the microphysical properties and these are in turn controlled by aerosol source and sink processes during transport as well as meteorological conditions.</p><p>A Lagrangian, trajectory-based GCM evaluation framework, using spatially and temporally collocated aerosol diagnostics, has been applied to over a dozen GCMs via the AeroCom initiative. This framework is designed to isolate the source and sink processes that occur during the aerosol life cycle in order to improve the understanding of the impact of these processes on the simulated aerosol burden. Measurement station observations linked to reanalysis trajectories are then used to evaluate each GCM with respect to a quasi-observational standard to assess GCM skill. The AeroCom trajectory experiment specifies strict guidelines for modelling groups; all simulations have wind fields nudged to ERA-Interim reanalysis and all simulations use emissions from the same inventories. This ensures that the discrepancies between GCM parameterisations are emphasised and differences due to large scale transport patterns, emissions and other external factors are minimised.</p><p>Preliminary results from the AeroCom trajectory experiment will be presented and discussed, some of which are summarised now. A comparison of GCM aerosol particle number size distributions against observations made by measurement stations in different environments will be shown, highlighting the difficulties that GCMs have at reproducing observed aerosol concentrations across all size ranges in pristine environments. The impact of precipitation during transport on aerosol microphysical properties in each GCM will be shown and the implications this has on resulting aerosol forcing estimates will be discussed. Results demonstrating the trajectory collocation framework will highlight its ability to give more accurate estimates of the key aerosol sources in GCMs and the importance of these sources in influencing modelled aerosol-cloud effects. In summary, it will be shown that this analysis approach enables us to better understand the drivers behind inter-model and model-observation discrepancies.</p>


2021 ◽  
Author(s):  
Patrick Peter ◽  
Sigrun Matthes ◽  
Christine Frömming ◽  
Volker Grewe

<p>Air transport has for a long time been linked to environmental issues like pollution, noise and climate change. While CO2 emissions are the main focus in public discussions, non-CO2 emissions of aviation may have a similar impact on the climate as aviation's carbon dioxide, e.g. contrail cirrus, nitrogen oxides or aviation induced cloudiness. While the effects of CO2 on climate are independent of location and situation during release, non-CO2 effects such as contrail formation vary depending on meteorological background. Previous studies investigated the influence of different weather situations on aviation’s climate change contribution, identifying climate sensitive regions and generating data products which enable air traffic management (ATM) to plan for climate optimized trajectories.</p> <p>The research presented here focuses on the further development of methods to determine the sensitivity of the atmosphere to aviation emissions with respect to climate effects in order to determine climate optimized aircraft trajectories. While previous studies focused on characterizing the North Atlantic Flight Corridor region, this study aims to extend the geographic scope by performing Lagrangian simulations in a global climate model EMAC for the northern hemispheric extratropical regions and tropical latitudes. This study addresses how realistically the physical conditions and processes for contrail formation and life cycle are represented in the upper troposphere and lower stratosphere by comparing them to airborne observations (HALO measurement campaign, CARIBIC/IAGOS scheduled flight measurements), examining key variables such as temperature or humidity. Direct comparison of model data with observations using clusters of data provides insight into the extent to which systematic biases exist that are relevant to the climate effects of contrails. We perform this comparison for different vertical resolutions to assess which vertical resolution in the EMAC model is well suited for studying contrail formation. Together with this model evaluation using aircraft measurements, the overall concept for studying the life cycle of contrails in the modular global climate model EMAC is introduced. Hereby, the concept for the development of a MET service that can be provided to ATM to evaluate contrail formation and its impact on the climate along planned aircraft trajectories is presented.</p> <p>Within the ClimOP collaborative project, we can investigate which physical processes determine the effects of contrails on climate and study their spatial and temporal variation. In addition, these climate change functions enable case studies that assess the impact of contrails on climate along trajectories and use alternative trajectories that avoid these regions of the atmosphere that have the potential to form contrails with a large radiative effect.</p> <p>This study is part of the ClimOP project and has received funding from European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement N° 875503 (ClimOP) and from the SESAR Joint Undertaking under grant agreements No 699395 (FlyATM4E). </p>


2010 ◽  
Vol 138 (5) ◽  
pp. 1738-1766 ◽  
Author(s):  
Conrad L. Ziegler ◽  
Edward R. Mansell ◽  
Jerry M. Straka ◽  
Donald R. MacGorman ◽  
Donald W. Burgess

Abstract This study reports on the dynamical evolution of simulated, long-lived right-moving supercell storms in a high-CAPE, strongly sheared mesoscale environment, which initiate in a weakly capped region and subsequently move into a cold boundary layer (BL) and inversion region before dissipating. The storm simulations realistically approximate the main morphological features and evolution of the 22 May 1981 Binger, Oklahoma, supercell storm by employing time-varying inflow lateral boundary conditions for the storm-relative moving grid, which in turn are prescribed from a parent, fixed steady-state mesoscale analysis to approximate the observed inversion region to the east of the dryline on that day. A series of full life cycle storm simulations have been performed in which the magnitude of boundary layer coldness and the convective inhibition are varied to examine the ability of the storm to regenerate and sustain its main updraft as it moves into environments with increasing convective stability. The analysis of the simulations employs an empirical expression for the theoretical speed of the right-forward-flank outflow boundary relative to the ambient, low-level storm inflow that is consistent with simulated cold-pool boundary movement. The theoretical outflow boundary speed in the direction opposite to the ambient flow increases with an increasing cold-pool temperature deficit relative to the ambient BL temperature, and it decreases as ambient wind speed increases. The right-moving, classic (CL) phase of the simulated supercells is supported by increasing precipitation content and a stronger cold pool, which increases the right-moving cold-pool boundary speed against the constant ambient BL winds. The subsequent decrease of the ambient BL temperature with eastward storm movement decreases the cold-pool temperature deficit and reduces the outflow boundary speed against the ambient winds, progressing through a state of stagnation to an ultimate retrogression of the outflow boundary in the direction of the ambient flow. Onset of a transient, left-moving low-precipitation (LP) phase is initiated as the storm redevelops on the retrograding outflow boundary. The left-moving LP storm induces compensating downward motions in the inversion layer that desiccates the inflow, elevates the cloudy updraft parcel level of free convection (LFC), and leads to the final storm decay. The results demonstrate that inversion-region simulations support isolated, long-lived supercells. Both the degree of stratification and the coldness of the ambient BL regulate the cold-pool intensity and the strength and capacity of the outflow boundary to lift BL air through the LFC and thus regenerate convection, resulting in variation of supercell duration in the inversion region of approximately 1–2 h. In contrast, horizontally homogeneous conditions lacking an inversion region result in the development of secondary convection from the initial isolated supercell, followed by rapid upscale growth after 3 h to form a long-lived mesoscale convective system.


2020 ◽  
Author(s):  
Daniele Peano ◽  
Enrico Scoccimarro ◽  
Alessio Bellucci ◽  
Malcolm Roberts ◽  
Annalisa Cherchi ◽  
...  

<p>Tropical cyclones (TCs) transport energy and moisture along their pathways interacting with the climate system and TCs activities are expected to extend further poleward during the 21<sup>st</sup> century.</p><p>For this reason, it is important to assess the ability of state-of-the-art climate models in reproducing an accurate meridional distribution of TCs as well as a reasonable meridional portrait of moisture transport associated with TCs.</p><p>Since high resolutions are required to reconstruct observed TCs activity, the present work is based on the simulations performed as part of HighResMIP in the framework of the community CMIP6 effort. To inspect this feature, two horizontal resolutions for each climate model are considered. Besides, the impact of boundary conditions, i.e. observed ocean surface state, is examined by considering both coupled and atmosphere-only configurations.</p><p>In the present work, the north Atlantic region is analyzed as a sample region, while the same approach is applied on a multi-basin basis. In the sample area, climate models present a good ability in reproducing the TCs distribution, with a general underestimation at lower latitudes and a slight overestimation at high-latitudes compared to observed TCs tracks (e.g. IBTRACK).</p><p>The meridional distribution of moisture transport associated with TCs is evaluated by considering the radial average of the integrated water vapor transport along the TC tracks. When compared to observation (IBTRACS and JRA-55 reanalysis), the simulated moisture transport associated with TCs displays reasonably good performance in atmosphere-only high-resolution models configuration. The interannual variability of water vapor associated with TCs, instead, is poorly represented in climate models.</p><p>Climate models in high-resolution configuration can then be used in estimating future TCs meridional distribution and changes in meridional moisture transport associated with TCs.</p><p>This effort is part of HighResMIP and it is developed in the framework of the EU-funded PRIMAVERA project.   </p>


2021 ◽  
Author(s):  
Zhihong Chen ◽  
Qin Wen ◽  
Haijun Yang

AbstractThe Tibetan Plateau (TP) plays an important role in regulating the global hydrologic cycle. Using a fully coupled climate model, we conduct sensitivity experiments to quantify the impact of the TP on North Africa precipitation. Removing the TP in the model can enhance North African precipitation. Specifically, North Africa precipitation increases substantially during the rainy season (from May to October) though it remains unchanged during the dry season (from November to April). During the rainy season, the TP’s absence in the model causes an anomalous moisture transport from the Indian Ocean and tropical Atlantic to North Africa, which enhances the moisture convergence over North Africa and increases precipitation there. Later on, the change in the Atlantic, that is, cooling (warming) in the North (South) Atlantic forces a southward cross-equatorial moisture transport anomaly from North Africa to the equatorial Atlantic, decreasing the moisture convergence over North Africa and thus precipitation. In general, the moisture convergence is strengthened in most regions of North Africa due to the TP removal, so the resultant precipitation is increased. During the dry season, atmospheric convection center over the Africa continent is located mainly south of the equator, and there is almost no anomalous moisture transport toward North Africa in response to the TP removal. These results suggest that the uplift of the TP may have led to North African aridity.


2011 ◽  
Vol 12 (4) ◽  
pp. 650-662
Author(s):  
Paul A. Dirmeyer ◽  
Timothy DelSole ◽  
Mei Zhao

Abstract Empirical correction is applied to wind, temperature, and soil moisture fields in a climate model to assess its impact on simulation of the water cycle during boreal summer. The empirical correction method is based on the biases in model forecasts only as a function of the time of year. Corrections are applied to the prognostic equations as an extra nudging term. Mean fields of evaporation, precipitation, moisture transport, and recycling ratio are all improved, even though humidity fields were not corrected. Simulation of the patterns of surface evaporation supplying rainfall at locations over land is also improved for most locations. There is also improvement in the simulation of evaporation and possibly rainfall, as measured by anomaly correlation coefficients and root-mean-square errors of the time series of monthly anomalies. However, monthly anomalies of other water cycle fields such as moisture transport and recycling ratio were not improved. Like any statistical adjustment, empirical correction does not address the cause of model errors, but it does provide a net improvement to the simulation of the water cycle. It can, however, be used to diagnose the sources of error in the model. Since corrections are only applied to prognostic variables, shortcomings due to physical parameterizations in the model are not remedied.


2005 ◽  
Vol 18 (9) ◽  
pp. 1326-1350 ◽  
Author(s):  
Pavel Ya Groisman ◽  
Richard W. Knight ◽  
David R. Easterling ◽  
Thomas R. Karl ◽  
Gabriele C. Hegerl ◽  
...  

Abstract Observed changes in intense precipitation (e.g., the frequency of very heavy precipitation or the upper 0.3% of daily precipitation events) have been analyzed for over half of the land area of the globe. These changes have been linked to changes in intense precipitation for three transient climate model simulations, all with greenhouse gas concentrations increasing during the twentieth and twenty-first centuries and doubling in the later part of the twenty-first century. It was found that both the empirical evidence from the period of instrumental observations and model projections of a greenhouse-enriched atmosphere indicate an increasing probability of intense precipitation events for many extratropical regions including the United States. Although there can be ambiguity as to the impact of more frequent heavy precipitation events, the thresholds of the definitions of these events were raised here, such that they are likely to be disruptive. Unfortunately, reliable assertions of very heavy and extreme precipitation changes are possible only for regions with dense networks due to the small radius of correlation for many intense precipitation events.


2003 ◽  
Author(s):  
Shayne Brannman ◽  
Eric W. Christensen ◽  
Ronald H. Nickel ◽  
Cori Rattelman ◽  
Richard D. Miller

Sign in / Sign up

Export Citation Format

Share Document