scholarly journals Mitigation of the double ITCZ syndrome in BCC-CSM2-MR through improving parameterizations of boundary-layer turbulence and shallow convection

2020 ◽  
Author(s):  
Yixiong Lu ◽  
Tongwen Wu ◽  
Yubin Li ◽  
Ben Yang

Abstract. The spurious double intertropical convergence zone (ITCZ) is one of the most prominent systematic biases in coupled atmosphere-ocean general circulation models (CGCMs), and the underestimated marine stratus over eastern subtropical oceans has been recognized as a possible contributor. Rather than modifying the cloud scheme itself, this study significantly promotes the marine stratus simulation through improving parameterizations of boundary-layer turbulence and shallow convection in the medium-resolution Beijing Climate Center Climate System Model version 2 (BCC-CSM2-MR). The University of Washington moist turbulence scheme is implemented in BCC-CSM2-MR to better represent the stratocumulus, and a decoupling criterion is also introduced to the shallow convection scheme for improving the simulation of the stratocumulus-to-cumulus transition. Results show that the simulated precipitation in the eastern Pacific south of the equator is largely reduced, alleviating the double ITCZ problem. The tropical precipitation asymmetry index increases from −0.024 in the original BCC-CSM2-MR to 0.147 in the revised BCC-CSM2-MR, which is much closer to the observation. The study suggests that improving parameterizations of boundary-layer turbulence and shallow convection is effective for mitigating the double ITCZ syndrome in CGCMs.

2021 ◽  
Vol 14 (8) ◽  
pp. 5183-5204
Author(s):  
Yixiong Lu ◽  
Tongwen Wu ◽  
Yubin Li ◽  
Ben Yang

Abstract. The spurious double Intertropical Convergence Zone (ITCZ) is one of the most prominent systematic biases in coupled atmosphere–ocean general circulation models (CGCMs), and the underestimated marine stratus over eastern subtropical oceans has been recognized as a possible contributor. Rather than modifying the cloud scheme itself, this study significantly ameliorates the marine stratus simulation through improving parameterizations of boundary-layer turbulence and shallow convection in the medium-resolution Beijing Climate Center Climate System Model version 2 (BCC-CSM2-MR). The University of Washington moist turbulence scheme is implemented in BCC-CSM2-MR to better represent the stratocumulus, and a decoupling criterion is also introduced to the shallow convection scheme for improving the simulation of the stratocumulus-to-cumulus transition. Results show that the simulated precipitation in the eastern Pacific south of the Equator is largely reduced, alleviating the double ITCZ problem. The tropical precipitation asymmetry index increases from −0.024 in the original BCC-CSM2-MR to 0.147 in the revised BCC-CSM2-MR, which is much closer to the observation. The study suggests that improving parameterizations of boundary-layer turbulence and shallow convection is effective for mitigating the double ITCZ syndrome in CGCMs.


2019 ◽  
Vol 19 (17) ◽  
pp. 11383-11399
Author(s):  
Jonathan K. P. Shonk ◽  
Teferi D. Demissie ◽  
Thomas Toniazzo

Abstract. Modern coupled general circulation models produce systematic biases in the tropical Atlantic that hamper the reliability of long-range predictions. This study focuses on a common springtime westerly wind bias in the equatorial Atlantic in seasonal hindcasts from two coupled models – ECMWF System 4 and EC-Earth v2.3 – and in hindcasts also based on System 4, but with prescribed sea-surface temperatures. The development of the equatorial westerly bias in early April is marked by a rapid transition from a wintertime easterly, cold tongue bias to a springtime westerly bias regime that displays a marked double intertropical convergence zone (ITCZ). The transition is a seasonal feature of the model climatology (independent of initialisation date) and is associated with a seasonal increase in rainfall where a second branch of the ITCZ is produced south of the Equator. Excess off-equatorial convergence redirects the trade winds away from the Equator. Based on arguments of temporal coincidence, the results of our analysis contrast with those from previous work, and alleged causes hereto identified as the likely cause of the equatorial westerly bias in other models must be discarded. Quite in general, we find no evidence of remote influences on the development of the springtime equatorial bias in the Atlantic in the IFS-based models. Limited evidence however is presented that supports the hypothesis of an incorrect representation of the meridional equatorward flow in the marine boundary layer of the southern Atlantic as a contributing factor. Erroneous dynamical constraints on the flow upstream of the Equator may generate convergence and associated rainfall south of the Equator. This directs attention to the representation of the properties of the subtropical boundary layer as a potential source for the double ITCZ bias.


2006 ◽  
Vol 63 (12) ◽  
pp. 3383-3403 ◽  
Author(s):  
Julio T. Bacmeister ◽  
Max J. Suarez ◽  
Franklin R. Robertson

Sensitivity experiments with an atmospheric general circulation model (AGCM) show that parameterized rain reevaporation has a large impact on simulated precipitation patterns in the tropical Pacific, especially on the configuration of the model’s intertropical convergence zone (ITCZ). Weak reevaporation leads to the formation of a “double ITCZ” during the northern warm season. The double ITCZ is accompanied by strong correlation between precipitation and high-frequency vertical motion in the planetary boundary layer (PBL). Strong reevaporation leads to a better overall agreement of simulated precipitation with observations. The model’s double ITCZ bias is reduced. At the same time, correlation between high-frequency (periods < 15 days) vertical motion in the PBL and precipitation is reduced. Experiments with modified physics indicate that evaporative cooling by rain near the PBL top weakens the coupling between precipitation-related heating and vertical motion in high-frequency motions. The strength of high-frequency vertical motions in the PBL was also reduced directly through the introduction of a diffusive cumulus momentum transport (DCMT) parameterization. The DCMT had a visible impact on simulated precipitation in the Tropics but did not reduce the model’s double ITCZ bias in all cases. Further analyses of mass and water vapor budgets, as well as vertical motion statistics, in the ITCZ complex, show that time-mean moisture convergence in the southern ITCZ is largely dominated by high-frequency modes, while in the northern ITCZ time-mean moisture convergence contains large contributions from slower modes. This may explain why the simulated southern ITCZ is more susceptible to parameterization changes that alter high-frequency coupling between moist heating and PBL convergence.


2008 ◽  
Vol 21 (1) ◽  
pp. 3-21 ◽  
Author(s):  
Soon-Il An ◽  
Jong-Seong Kug ◽  
Yoo-Geun Ham ◽  
In-Sik Kang

Abstract The multidecadal modulation of the El Niño–Southern Oscillation (ENSO) due to greenhouse warming has been analyzed herein by means of diagnostics of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) coupled general circulation models (CGCMs) and the eigenanalysis of a simplified version of an intermediate ENSO model. The response of the global-mean troposphere temperature to increasing greenhouse gases is more likely linear, while the amplitude and period of ENSO fluctuates in a multidecadal time scale. The climate system model outputs suggest that the multidecadal modulation of ENSO is related to the delayed response of the subsurface temperature in the tropical Pacific compared to the response time of the sea surface temperature (SST), which would lead a modulation of the vertical temperature gradient. Furthermore, an eigenanalysis considering only two parameters, the changes in the zonal contrast of the mean background SST and the changes in the vertical contrast between the mean surface and subsurface temperatures in the tropical Pacific, exhibits a good agreement with the CGCM outputs in terms of the multidecadal modulations of the ENSO amplitude and period. In particular, the change in the vertical contrast, that is, change in difference between the subsurface temperature and SST, turns out to be more influential on the ENSO modulation than changes in the mean SST itself.


2008 ◽  
Vol 21 (19) ◽  
pp. 4955-4973 ◽  
Author(s):  
Michael P. Jensen ◽  
Andrew M. Vogelmann ◽  
William D. Collins ◽  
Guang J. Zhang ◽  
Edward P. Luke

Abstract To aid in understanding the role that marine boundary layer (MBL) clouds play in climate and assist in improving their representations in general circulation models (GCMs), their long-term microphysical and macroscale characteristics are quantified using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the National Aeronautics and Space Administration’s (NASA’s) Terra satellite. Six years of MODIS pixel-level cloud products are used from oceanic study regions off the west coasts of California, Peru, the Canary Islands, Angola, and Australia where these cloud types are common. Characterizations are given for their organization (macroscale structure), the associated microphysical properties, and the seasonal dependencies of their variations for scales consistent with the size of a GCM grid box (300 km × 300 km). MBL mesoscale structure is quantified using effective cloud diameter CD, which is introduced here as a simplified measure of bulk cloud organization; it is straightforward to compute and provides descriptive information beyond that offered by cloud fraction. The interrelationships of these characteristics are explored while considering the influences of the MBL state, such as the occurrence of drizzle. Several commonalities emerge for the five study regions. MBL clouds contain the best natural examples of plane-parallel clouds, but overcast clouds occur in only about 25% of the scenes, which emphasizes the importance of representing broken MBL cloud fields in climate models (that are subgrid scale). During the peak months of cloud occurrence, mesoscale organization (larger CD) increases such that the fractions of scenes characterized as “overcast” and “clumped” increase at the expense of the “scattered” scenes. Cloud liquid water path and visible optical depth usually trend strongly with CD, with the largest values occurring for scenes that are drizzling. However, considerable interregional differences exist in these trends, suggesting that different regression functionalities exist for each region. For peak versus off-peak months, the fraction of drizzling scenes (as a function of CD) are similar for California and Angola, which suggests that a single probability distribution function might be used for their drizzle occurrence in climate models. The patterns are strikingly opposite for Peru and Australia; thus, the contrasts among regions may offer a test bed for model simulations of MBL drizzle occurrence.


2008 ◽  
Vol 21 (12) ◽  
pp. 2770-2789 ◽  
Author(s):  
Raffaele Ferrari ◽  
James C. McWilliams ◽  
Vittorio M. Canuto ◽  
Mikhail Dubovikov

Abstract In the stably stratified interior of the ocean, mesoscale eddies transport materials by quasi-adiabatic isopycnal stirring. Resolving or parameterizing these effects is important for modeling the oceanic general circulation and climate. Near the bottom and near the surface, however, microscale boundary layer turbulence overcomes the adiabatic, isopycnal constraints for the mesoscale transport. In this paper a formalism is presented for representing this transition from adiabatic, isopycnally oriented mesoscale fluxes in the interior to the diabatic, along-boundary mesoscale fluxes near the boundaries. A simple parameterization form is proposed that illustrates its consequences in an idealized flow. The transition is not confined to the turbulent boundary layers, but extends into the partially diabatic transition layers on their interiorward edge. A transition layer occurs because of the mesoscale variability in the boundary layer and the associated mesoscale–microscale dynamical coupling.


2014 ◽  
Vol 27 (6) ◽  
pp. 2427-2443 ◽  
Author(s):  
Wei Liu ◽  
Zhengyu Liu ◽  
Esther C. Brady

Abstract This paper is concerned with the question: why do coupled general circulation models (CGCM) seem to be biased toward a monostable Atlantic meridional overturning circulation (AMOC)? In particular, the authors investigate whether the monostable behavior of the CGCMs is caused by a bias of model surface climatology. First observational literature is reviewed, and it is suggested that the AMOC is likely to be bistable in the real world in the past and present. Then the stability of the AMOC in the NCAR Community Climate System Model, version 3 (CCSM3) is studied by comparing the present-day control simulation (without flux adjustment) with a sensitivity experiment with flux adjustment. It is found that the monostable AMOC in the control simulation is altered to a bistable AMOC in the flux-adjustment experiment because a reduction of the surface salinity biases in the tropical and northern North Atlantic leads to a reduction of the bias of freshwater transport in the Atlantic. In particular, the tropical bias associated with the double ITCZ reduces salinity in the upper South Atlantic Ocean and, in turn, the AMOC freshwater export, which tends to overstabilize the AMOC and therefore biases the AMOC from bistable toward monostable state. This conclusion is consistent with a further analysis of the stability indicator of two groups of IPCC Fourth Assessment Report (AR4) CGCMs: one without and the other with flux adjustment. Because the tropical bias is a common feature among all CGCMs without flux adjustment, the authors propose that the surface climate bias, notably the tropical bias in the Atlantic, may contribute significantly to the monostability of AMOC behavior in current CGCMs.


2015 ◽  
Vol 11 (10) ◽  
pp. 1375-1393 ◽  
Author(s):  
S. Jasechko ◽  
A. Lechler ◽  
F. S. R. Pausata ◽  
P. J. Fawcett ◽  
T. Gleeson ◽  
...  

Abstract. Reconstructions of Quaternary climate are often based on the isotopic content of paleo-precipitation preserved in proxy records. While many paleo-precipitation isotope records are available, few studies have synthesized these dispersed records to explore spatial patterns of late-glacial precipitation δ18O. Here we present a synthesis of 86 globally distributed groundwater (n = 59), cave calcite (n = 15) and ice core (n = 12) isotope records spanning the late-glacial (defined as ~ 50 000 to ~ 20 000 years ago) to the late-Holocene (within the past ~ 5000 years). We show that precipitation δ18O changes from the late-glacial to the late-Holocene range from −7.1 ‰ (δ18Olate-Holocene > δ18Olate-glacial) to +1.7 ‰ (δ18Olate-glacial > δ18Olate-Holocene), with the majority (77 %) of records having lower late-glacial δ18O than late-Holocene δ18O values. High-magnitude, negative precipitation δ18O shifts are common at high latitudes, high altitudes and continental interiors (δ18Olate-Holocene > δ18Olate-glacial by more than 3 ‰). Conversely, low-magnitude, positive precipitation δ18O shifts are concentrated along tropical and subtropical coasts (δ18Olate-glacial > δ18Olate-Holocene by less than 2 ‰). Broad, global patterns of late-glacial to late-Holocene precipitation δ18O shifts suggest that stronger-than-modern isotopic distillation of air masses prevailed during the late-glacial, likely impacted by larger global temperature differences between the tropics and the poles. Further, to test how well general circulation models reproduce global precipitation δ18O shifts, we compiled simulated precipitation δ18O shifts from five isotope-enabled general circulation models simulated under recent and last glacial maximum climate states. Climate simulations generally show better inter-model and model-measurement agreement in temperate regions than in the tropics, highlighting a need for further research to better understand how inter-model spread in convective rainout, seawater δ18O and glacial topography parameterizations impact simulated precipitation δ18O. Future research on paleo-precipitation δ18O records can use the global maps of measured and simulated late-glacial precipitation isotope compositions to target and prioritize field sites.


2005 ◽  
Vol 6 (5) ◽  
pp. 670-680 ◽  
Author(s):  
David M. Lawrence ◽  
Julia M. Slingo

Abstract A recent model intercomparison, the Global Land–Atmosphere Coupling Experiment (GLACE), showed that there is a wide range of land–atmosphere coupling strengths, or the degree that soil moisture affects the generation of precipitation, amongst current atmospheric general circulation models (AGCMs). Coupling strength in the Hadley Centre atmosphere model (HadAM3) is among the weakest of all AGCMs considered in GLACE. Reasons for the weak HadAM3 coupling strength are sought here. In particular, the impact of pervasive saturated soil conditions and low soil moisture variability on coupling strength is assessed. It is found that when the soil model is modified to reduce the occurrence of soil moisture saturation and to encourage soil moisture variability, the soil moisture–precipitation feedback remains weak, even though the relationship between soil moisture and evaporation is strengthened. Composites of the diurnal cycle, constructed relative to soil moisture, indicate that the model can simulate key differences in boundary layer development over wet versus dry soils. In particular, the influence of wet or dry soil on the diurnal cycles of Bowen ratio, boundary layer height, and total heat flux are largely consistent with the observed influence of soil moisture on these properties. However, despite what appears to be successful simulation of these key aspects of the indirect soil moisture–precipitation feedback, the model does not capture observed differences for wet and dry soils in the daily accumulation of boundary layer moist static energy, a crucial feature of the feedback mechanism.


Sign in / Sign up

Export Citation Format

Share Document