scholarly journals RADIv1: a non-steady-state early diagenetic model for ocean sediments in Julia and MATLAB/GNU Octave

2021 ◽  
Author(s):  
Olivier Sulpis ◽  
Matthew Humphreys ◽  
Monica Wilhelmus ◽  
Dustin Carroll ◽  
William Berelson ◽  
...  

Abstract. We introduce a time-dependent, one-dimensional model of early diagenesis that we term RADI, an acronym accounting for the main processes included in the model: chemical Reactions, Advection, molecular and bio-Diffusion, and bio-Irrigation. RADI is targeted for study of deep-sea sediments, in particular those containing calcium carbonates (CaCO3). RADI combines CaCO3 dissolution driven by organic matter degradation with a diffusive boundary layer and integrates state-of-the-art parameterizations of CaCO3 dissolution kinetics in seawater, thus serving as a link between mechanistic surface-reaction modelling and global-scale biogeochemical models. RADI also includes CaCO3 precipitation, providing a continuum between CaCO3 dissolution and precipitation. RADI integrates components rather than individual chemical species for accessibility and is straightforward to compare against measurements. RADI is the first diagenetic model implemented in Julia, a high-performance programming language that is free and open source, and it is also available in MATLAB/GNU Octave. Here, we first describe the scientific background behind RADI and its implementations. Then, we evaluate its performance in three selected locations and explore other potential applications, such as the influence of tides and seasonality on early diagenesis in the deep ocean. RADI is a powerful tool to study the time-transient and steady-state response of the sedimentary system to environmental perturbation, such as deep-sea mining, deoxygenation or acidification events.

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1081
Author(s):  
Shin-Yi Min ◽  
Won-Ju Cho

In this study, we implemented a high-performance two-terminal memristor device with a metal/insulator/metal (MIM) structure using a solution-derived In-Ga-Zn-Oxide (IGZO)-based nanocomposite as a resistive switching (RS) layer. In order to secure stable memristive switching characteristics, IGZO:N nanocomposites were synthesized through the microwave-assisted nitridation of solution-derived IGZO thin films, and the resulting improvement in synaptic characteristics was systematically evaluated. The microwave-assisted nitridation of solution-derived IGZO films was clearly demonstrated by chemical etching, optical absorption coefficient analysis, and X-ray photoelectron spectroscopy. Two types of memristor devices were prepared using an IGZO or an IGZO:N nanocomposite film as an RS layer. As a result, the IGZO:N memristors showed excellent endurance and resistance distribution in the 103 repeated cycling tests, while the IGZO memristors showed poor characteristics. Furthermore, in terms of electrical synaptic operation, the IGZO:N memristors possessed a highly stable nonvolatile multi-level resistance controllability and yielded better electric pulse-induced conductance modulation in 5 × 102 stimulation pulses. These findings demonstrate that the microwave annealing process is an effective synthesis strategy for the incorporation of chemical species into the nanocomposite framework, and that the microwave-assisted nitridation improves the memristive switching characteristics in the oxide-based RS layer.


2013 ◽  
Vol 26 (21) ◽  
pp. 8597-8615 ◽  
Author(s):  
Alexander Sen Gupta ◽  
Nicolas C. Jourdain ◽  
Jaclyn N. Brown ◽  
Didier Monselesan

Abstract Climate models often exhibit spurious long-term changes independent of either internal variability or changes to external forcing. Such changes, referred to as model “drift,” may distort the estimate of forced change in transient climate simulations. The importance of drift is examined in comparison to historical trends over recent decades in the Coupled Model Intercomparison Project (CMIP). Comparison based on a selection of metrics suggests a significant overall reduction in the magnitude of drift from phase 3 of CMIP (CMIP3) to phase 5 of CMIP (CMIP5). The direction of both ocean and atmospheric drift is systematically biased in some models introducing statistically significant drift in globally averaged metrics. Nevertheless, for most models globally averaged drift remains weak compared to the associated forced trends and is often smaller than the difference between trends derived from different ensemble members or the error introduced by the aliasing of natural variability. An exception to this is metrics that include the deep ocean (e.g., steric sea level) where drift can dominate in forced simulations. In such circumstances drift must be corrected for using information from concurrent control experiments. Many CMIP5 models now include ocean biogeochemistry. Like physical models, biogeochemical models generally undergo long spinup integrations to minimize drift. Nevertheless, based on a limited subset of models, it is found that drift is an important consideration and must be accounted for. For properties or regions where drift is important, the drift correction method must be carefully considered. The use of a drift estimate based on the full control time series is recommended to minimize the contamination of the drift estimate by internal variability.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Joseph R. Wasniewski ◽  
David H. Altman ◽  
Stephen L. Hodson ◽  
Timothy S. Fisher ◽  
Anuradha Bulusu ◽  
...  

The next generation of thermal interface materials (TIMs) are currently being developed to meet the increasing demands of high-powered semiconductor devices. In particular, a variety of nanostructured materials, such as carbon nanotubes (CNTs), are interesting due to their ability to provide low resistance heat transport from device-to-spreader and compliance between materials with dissimilar coefficients of thermal expansion (CTEs), but few application-ready configurations have been produced and tested. Recently, we have undertaken major efforts to develop functional nanothermal interface materials (nTIMs) based on short, vertically aligned CNTs grown on both sides of a thin interposer foil and interfaced with substrate materials via metallic bonding. A high-precision 1D steady-state test facility has been utilized to measure the performance of nTIM samples, and more importantly, to correlate performance to the controllable parameters. In this paper, we describe our material structures and the myriad permutations of parameters that have been investigated in their design. We report these nTIM thermal performance results, which include a best to-date thermal interface resistance measurement of 3.5 mm2 K/W, independent of applied pressure. This value is significantly better than a variety of commercially available, high-performance thermal pads and greases we tested, and compares favorably with the best results reported for CNT-based materials in an application-representative setting.


2012 ◽  
Vol 56 (10) ◽  
pp. 5076-5081 ◽  
Author(s):  
Keith A. Rodvold ◽  
Mark H. Gotfried ◽  
J. Gordon Still ◽  
Kay Clark ◽  
Prabhavathi Fernandes

ABSTRACTThe steady-state concentrations of solithromycin in plasma were compared with concomitant concentrations in epithelial lining fluid (ELF) and alveolar macrophages (AM) obtained from intrapulmonary samples during bronchoscopy and bronchoalveolar lavage (BAL) in 30 healthy adult subjects. Subjects received oral solithromycin at 400 mg once daily for five consecutive days. Bronchoscopy and BAL were carried out once in each subject at either 3, 6, 9, 12, or 24 h after the last administered dose of solithromycin. Drug concentrations in plasma, ELF, and AM were assayed by a high-performance liquid chromatography-tandem mass spectrometry method. Solithromycin was concentrated extensively in ELF (range of mean [± standard deviation] concentrations, 1.02 ± 0.83 to 7.58 ± 6.69 mg/liter) and AM (25.9 ± 20.3 to 101.7 ± 52.6 mg/liter) in comparison with simultaneous plasma concentrations (0.086 ± 0.070 to 0.730 ± 0.692 mg/liter). The values for the area under the concentration-time curve from 0 to 24 h (AUC0–24values) based on mean and median ELF concentrations were 80.3 and 63.2 mg · h/liter, respectively. The ratio of ELF to plasma concentrations based on the mean and median AUC0–24values were 10.3 and 10.0, respectively. The AUC0–24values based on mean and median concentrations in AM were 1,498 and 1,282 mg · h/L, respectively. The ratio of AM to plasma concentrations based on the mean and median AUC0–24values were 193 and 202, respectively. Once-daily oral dosing of solithromycin at 400 mg produced steady-state concentrations that were significantly (P< 0.05) higher in ELF (2.4 to 28.6 times) and AM (44 to 515 times) than simultaneous plasma concentrations throughout the 24-h period after 5 days of solithromycin administration.


2003 ◽  
Vol 45 (12A) ◽  
pp. A335-A350 ◽  
Author(s):  
M Ono ◽  
M G Bell ◽  
R E Bell ◽  
T Bigelow ◽  
M Bitter ◽  
...  

2016 ◽  
Vol 2 (10) ◽  
pp. e1600492 ◽  
Author(s):  
Roberto Danovaro ◽  
Antonio Dell’Anno ◽  
Cinzia Corinaldesi ◽  
Eugenio Rastelli ◽  
Ricardo Cavicchioli ◽  
...  

Viruses are the most abundant biological entities in the world’s oceans, and they play a crucial role in global biogeochemical cycles. In deep-sea ecosystems, archaea and bacteria drive major nutrient cycles, and viruses are largely responsible for their mortality, thereby exerting important controls on microbial dynamics. However, the relative impact of viruses on archaea compared to bacteria is unknown, limiting our understanding of the factors controlling the functioning of marine systems at a global scale. We evaluate the selectivity of viral infections by using several independent approaches, including an innovative molecular method based on the quantification of archaeal versus bacterial genes released by viral lysis. We provide evidence that, in all oceanic surface sediments (from 1000- to 10,000-m water depth), the impact of viral infection is higher on archaea than on bacteria. We also found that, within deep-sea benthic archaea, the impact of viruses was mainly directed at members of specific clades of Marine Group I Thaumarchaeota. Although archaea represent, on average, ~12% of the total cell abundance in the top 50 cm of sediment, virus-induced lysis of archaea accounts for up to one-third of the total microbial biomass killed, resulting in the release of ~0.3 to 0.5 gigatons of carbon per year globally. Our results indicate that viral infection represents a key mechanism controlling the turnover of archaea in surface deep-sea sediments. We conclude that interactions between archaea and their viruses might play a profound, previously underestimated role in the functioning of deep-sea ecosystems and in global biogeochemical cycles.


Sign in / Sign up

Export Citation Format

Share Document