scholarly journals Integration of Geographic Information System frameworks into domain discretisation and meshing processes for geophysical models

2014 ◽  
Vol 7 (5) ◽  
pp. 5993-6060 ◽  
Author(s):  
A. S. Candy ◽  
A. Avdis ◽  
J. Hill ◽  
G. J. Gorman ◽  
M. D. Piggott

Abstract. Computational simulations of physical phenomena rely on an accurate discretisation of the model domain. Numerical models have increased in sophistication to a level where it is possible to support terrain-following boundaries that conform accurately to real physical interfaces, and resolve a multiscale of spatial resolutions. Whilst simulation codes are maturing in this area, pre-processing tools have not developed significantly enough to competently initialise these problems in a rigorous, efficient and recomputable manner. In the relatively disjoint field of Geographic Information Systems (GIS) however, techniques and tools for mapping and analysis of geographical data have matured significantly. If data provenance and recomputability are to be achieved, the manipulation and agglomeration of data in the pre-processing of numerical simulation initialisation data for geophysical models should be integrated into GIS. A new approach to the discretisation of geophysical domains is presented, and introduced with a verified implementation. This brings together the technologies of geospatial analysis, meshing and numerical simulation models. This platform enables us to combine and build up features, quickly drafting and updating mesh descriptions with the rigour that established GIS tools provide. This, combined with the systematic workflow, supports a strong provenance for model initialisation and encourages the convergence of standards.

2015 ◽  
Vol 8 (11) ◽  
pp. 3681-3694 ◽  
Author(s):  
T. Fischer ◽  
D. Naumov ◽  
S. Sattler ◽  
O. Kolditz ◽  
M. Walther

Abstract. We offer a versatile workflow to convert geological models built with the ParadigmTM GOCAD© (Geological Object Computer Aided Design) software into the open-source VTU (Visualization Toolkit unstructured grid) format for usage in numerical simulation models. Tackling relevant scientific questions or engineering tasks often involves multidisciplinary approaches. Conversion workflows are needed as a way of communication between the diverse tools of the various disciplines. Our approach offers an open-source, platform-independent, robust, and comprehensible method that is potentially useful for a multitude of environmental studies. With two application examples in the Thuringian Syncline, we show how a heterogeneous geological GOCAD model including multiple layers and faults can be used for numerical groundwater flow modeling, in our case employing the OpenGeoSys open-source numerical toolbox for groundwater flow simulations. The presented workflow offers the chance to incorporate increasingly detailed data, utilizing the growing availability of computational power to simulate numerical models.


2016 ◽  
Vol 15 (2) ◽  
pp. 76
Author(s):  
F. S. Nascimento ◽  
M. A. R. Nascimento ◽  
C. J. R. Coronado ◽  
L. O. Rodrigues ◽  
J. A. Carvalho Jr ◽  
...  

The oxy-combustion has generated significant interested for reduction of CO2 emission when the fossil fuel is coal, due to simplification on the separation process of CO2 from the flue gas, it can be more easily stored in reservoir. The CFD numerical simulation techniques in oxy-coal combustion has the potential to contribute to designers in cost savings and reduced computational time; Furthermore, such techniques also provide a robust tool for better understanding and description of the aerothermodynamics processes involved, as well as, aiding the design of most efficient furnaces. However, to obtain representative results of the physical phenomena, the numerical models employed by CFD needs to be suitable for oxy-coal combustion. So, the aim of the paper is to carry out a review of the recent models that are being used for turbulence, combustion and pollutant emissions. Moreover, it is shown a comparison of different results obtained in the numerical simulation of oxy-coal combustion among new models, existing models and experiments. The analysis of the models and experiments shows that the challenges that are still being faced to obtain better accuracy of numerical simulation results. Improvements in the models for oxy-coal combustion can be seen like potential opportunities to investigate and optimize the process that occur in the combustion.


2015 ◽  
Vol 8 (8) ◽  
pp. 6309-6348
Author(s):  
T. Fischer ◽  
M. Walther ◽  
S. Sattler ◽  
D. Naumov ◽  
O. Kolditz

Abstract. We offer a versatile workflow to convert geological models built with the software Paradigm™ GOCAD© into the open-source VTU format for the usage in numerical simulation models. Tackling relevant scientific questions or engineering tasks often involves multidisciplinary approaches. Conversion workflows are needed as a way of communication between the diverse tools of the various disciplines. Our approach offers an open-source, platform independent, robust, and comprehensible method that is potentially useful for a multitude of similar environmental studies. With two application examples in the Thuringian Syncline, we show how a heterogeneous geological GOCAD model including multiple layers and faults can be used for numerical groundwater flow modelling. The presented workflow offers the chance to incorporate increasingly detailed data, utilizing growing availability of computational power to simulate numerical models.


Land ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Krystyna Kurowksa ◽  
Renata Marks-Bielska ◽  
Stanisław Bielski ◽  
Audrius Aleknavičius ◽  
Cezary Kowalczyk

Sustainable development is socioeconomic growth that integrates political, economic, and social measures alongside environmental protection to meet the needs of communities and citizens without compromising the ability of future generations to meet their needs. The sustainable development concept was initially based on three main pillars: environment, economy, and society. In successive years, this concept has been expanded to include new pillars. The awareness of these changes has influenced our research interests. The main research objective of this study was to evaluate the applicability of geographic information system (GIS) tools (data, tools, and multidimensional analyses) to the implementation of sustainable development principles in rural areas. The study covered rural and nonurbanized areas in Poland, especially farmland, forests, fisheries, and farms. The study presents the results of our research into environmental, economic, and social determinants of growth in the spatial dimension. GIS tools continue to evolve, which improves access to information and increases database managers’ awareness that highly accurate data are needed for spatial analyses. GIS systems allow us to formulate, in a structured and formal way, models that reflect both the current state and forecast changes that will occur in space. It is a very useful tool in the sustainable development of rural areas.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 458
Author(s):  
Leobardo Hernandez-Gonzalez ◽  
Jazmin Ramirez-Hernandez ◽  
Oswaldo Ulises Juarez-Sandoval ◽  
Miguel Angel Olivares-Robles ◽  
Ramon Blanco Sanchez ◽  
...  

The electric behavior in semiconductor devices is the result of the electric carriers’ injection and evacuation in the low doping region, N-. The carrier’s dynamic is determined by the ambipolar diffusion equation (ADE), which involves the main physical phenomena in the low doping region. The ADE does not have a direct analytic solution since it is a spatio-temporal second-order differential equation. The numerical solution is the most used, but is inadequate to be integrated into commercial electric circuit simulators. In this paper, an empiric approximation is proposed as the solution of the ADE. The proposed solution was validated using the final equations that were implemented in a simulator; the results were compared with the experimental results in each phase, obtaining a similarity in the current waveforms. Finally, an advantage of the proposed methodology is that the final expressions obtained can be easily implemented in commercial simulators.


2021 ◽  
Vol 13 (4) ◽  
pp. 1883
Author(s):  
Agnieszka Telega ◽  
Ivan Telega ◽  
Agnieszka Bieda

Cities occupy only about 3% of the Earth’s surface area, but half of the global population lives in them. The high population density in urban areas requires special actions to make these areas develop sustainably. One of the greatest challenges of the modern world is to organize urban spaces in a way to make them attractive, safe and friendly to people living in cities. This can be managed with the help of a number of indicators, one of which is walkability. Of course, the most complete analyses are based on spatial data, and the easiest way to implement them is using GIS tools. Therefore, the goal of the paper is to present a new approach for measuring walkability, which is based on density maps of specific urban functions and networks of generally accessible pavements and paths. The method is implemented using open-source data. Density values are interpolated from point data (urban objects featuring specific functions) and polygons (pedestrian infrastructure) using Kernel Density and Line Density tools in GIS. The obtained values allow the calculation of a synthetic indicator taking into account the access by means of pedestrian infrastructure to public transport stops, parks and recreation areas, various attractions, shops and services. The proposed method was applied to calculate the walkability for Kraków (the second largest city in Poland). The greatest value of walkability was obtained for the Main Square (central part of the Old Town). The least accessible to pedestrians are, on the other hand, areas located on the outskirts of the city, which are intended for extensive industrial areas, single-family housing or large green areas.


2021 ◽  
Vol 73 (04) ◽  
pp. 60-61
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 199149, “Rate-Transient-Analysis-Assisted History Matching With a Combined Hydraulic Fracturing and Reservoir Simulator,” by Garrett Fowler, SPE, and Mark McClure, SPE, ResFrac, and Jeff Allen, Recoil Resources, prepared for the 2020 SPE Latin American and Caribbean Petroleum Engineering Conference, originally scheduled to be held in Bogota, Colombia, 17–19 March. The paper has not been peer reviewed. This paper presents a step-by-step work flow to facilitate history matching numerical simulation models of hydraulically fractured shale wells. Sensitivity analysis simulations are performed with a coupled hydraulic fracturing, geomechanics, and reservoir simulator. The results are used to develop what the authors term “motifs” that inform the history-matching process. Using intuition from these simulations, history matching can be expedited by changing matrix permeability, fracture conductivity, matrix-pressure-dependent permeability, boundary effects, and relative permeability. Introduction This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 199149, “Rate-Transient-Analysis-Assisted History Matching With a Combined Hydraulic Fracturing and Reservoir Simulator,” by Garrett Fowler, SPE, and Mark McClure, SPE, ResFrac, and Jeff Allen, Recoil Resources, prepared for the 2020 SPE Latin American and Caribbean Petroleum Engineering Conference, originally scheduled to be held in Bogota, Colombia, 17-19 March. The paper has not been peer reviewed. This paper presents a step-by-step work flow to facilitate history matching numerical simulation models of hydraulically fractured shale wells. Sensitivity analysis simulations are performed with a coupled hydraulic fracturing, geomechanics, and reservoir simulator. The results are used to develop what the authors term “motifs” that inform the history-matching process. Using intuition from these simulations, history matching can be expedited by changing matrix permeability, fracture conductivity, matrix-pressure-dependent permeability, boundary effects, and relative permeability. Introduction The concept of rate transient analysis (RTA) involves the use of rate and pressure trends of producing wells to estimate properties such as permeability and fracture surface area. While very useful, RTA is an analytical technique and has commensurate limitations. In the complete paper, different RTA motifs are generated using a simulator. Insights from these motif simulations are used to modify simulation parameters to expediate and inform the history- matching process. The simulation history-matching work flow presented includes the following steps: 1 - Set up a simulation model with geologic properties, wellbore and completion designs, and fracturing and production schedules 2 - Run an initial model 3 - Tune the fracture geometries (height and length) to heuristic data: microseismic, frac-hit data, distributed acoustic sensing, or other diagnostics 4 - Match instantaneous shut-in pressure (ISIP) and wellhead pressure (WHP) during injection 5 - Make RTA plots of the real and simulated production data 6 - Use the motifs presented in the paper to identify possible production mechanisms in the real data 7 - Adjust history-matching parameters in the simulation model based on the intuition gained from RTA of the real data 8 -Iterate Steps 5 through 7 to obtain a match in RTA trends 9 - Modify relative permeabilities as necessary to obtain correct oil, water, and gas proportions In this study, the authors used a commercial simulator that fully integrates hydraulic fracturing, wellbore, and reservoir simulation into a single modeling code. Matching Fracturing Data The complete paper focuses on matching production data, assisted by RTA, not specifically on the matching of fracturing data such as injection pressure and fracture geometry (Steps 3 and 4). Nevertheless, for completeness, these steps are very briefly summarized in this section. Effective fracture toughness is the most-important factor in determining fracture length. Field diagnostics suggest considerable variability in effective fracture toughness and fracture length. Typical half-lengths are between 500 and 2,000 ft. Laboratory-derived values of fracture toughness yield longer fractures (propagation of 2,000 ft or more from the wellbore). Significantly larger values of fracture toughness are needed to explain the shorter fracture length and higher net pressure values that are often observed. The authors use a scale- dependent fracture-toughness parameter to increase toughness as the fracture grows. This allows the simulator to match injection pressure data while simultaneously limiting fracture length. This scale-dependent toughness scaling parameter is the most-important parameter in determining fracture size.


2004 ◽  
Vol 120 ◽  
pp. 697-704
Author(s):  
L. Depradeux ◽  
J.-F. Jullien

In this study, a parallel experimental and numerical simulation of phenomena that take place in the Heat Affected Zone during TIG welding on 316L stainless steel is presented. The aim of this study is to predict by numerical simulation residual stresses and distortions generated by the welding process. For the experiment, a very simple geometry with reduced dimensions is considered: the specimens are disks, made of 316L. The discs are heated in the central zone in order to reproduce thermo-mechanical cycles that take place in the HAZ during a TIG welding process. During and after thermal cycle, a large quantity of measurement is provided, and allows to compare the results of different numerical models used in the simulations. The comparative thermal and mechanical analysis allows to assess the general ability of the numerical models to describe the structural behavior. The importance of the heat input rate and material characteristics is also investigated.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Aditya A. Walvekar ◽  
Neil Paulson ◽  
Farshid Sadeghi ◽  
Nick Weinzapfel ◽  
Martin Correns ◽  
...  

Large bearings employed in wind turbine applications have half-contact widths that are usually greater than 1 mm. Previous numerical models developed to investigate rolling contact fatigue (RCF) require significant computational effort to study large rolling contacts. This work presents a new computationally efficient approach to investigate RCF life scatter and spall formation in large bearings. The modeling approach incorporates damage mechanics constitutive relations in the finite element (FE) model to capture fatigue damage. It utilizes Voronoi tessellation to account for variability occurring due to the randomness in the material microstructure. However, to make the model computationally efficient, a Delaunay triangle mesh was used in the FE model to compute stresses during a rolling contact pass. The stresses were then mapped onto the Voronoi domain to evaluate the fatigue damage that leads to the formation of surface spall. The Delaunay triangle mesh was dynamically refined around the damaged elements to capture the stress concentration accurately. The new approach was validated against previous numerical model for small rolling contacts. The scatter in the RCF lives and the progression of fatigue spalling for large bearings obtained from the model show good agreement with experimental results available in the open literature. The ratio of L10 lives for different sized bearings computed from the model correlates well with the formula derived from the basic life rating for radial roller bearing as per ISO 281. The model was then extended to study the effect of initial internal voids on RCF life. It was found that for the same initial void density, the L10 life decreases with the increase in the bearing size.


Sign in / Sign up

Export Citation Format

Share Document