scholarly journals An approach to identify urban groundwater recharge

2010 ◽  
Vol 14 (10) ◽  
pp. 2085-2097 ◽  
Author(s):  
E. Vázquez-Suñé ◽  
J. Carrera ◽  
I. Tubau ◽  
X. Sánchez-Vila ◽  
A. Soler

Abstract. Evaluating the proportion in which waters from different origins are mixed in a given water sample is relevant for many hydrogeological problems, such as quantifying total recharge, assessing groundwater pollution risks, or managing water resources. Our work is motivated by urban hydrogeology, where waters with different chemical signature can be identified (losses from water supply and sewage networks, infiltration from surface runoff and other water bodies, lateral aquifers inflows, ...). The relative contribution of different sources to total recharge can be quantified by means of solute mass balances, but application is hindered by the large number of potential origins. Hence, the need to incorporate data from a large number of conservative species, the uncertainty in sources concentrations and measurement errors. We present a methodology to compute mixing ratios and end-members composition, which consists of (i) Identification of potential recharge sources, (ii) Selection of tracers, (iii) Characterization of the hydrochemical composition of potential recharge sources and mixed water samples, and (iv) Computation of mixing ratios and reevaluation of end-members. The analysis performed in a data set from samples of the Barcelona city aquifers suggests that the main contributors to total recharge are the water supply network losses (22%), the sewage network losses (30%), rainfall, concentrated in the non-urbanized areas (17%), from runoff infiltration (20%), and the Besòs River (11%). Regarding species, halogens (chloride, fluoride and bromide), sulfate, total nitrogen, and stable isotopes (18O, 2H, and 34S) behaved quite conservatively. Boron, residual alkalinity, EDTA and Zn did not. Yet, including these species in the computations did not affect significantly the proportion estimations.

2010 ◽  
Vol 7 (2) ◽  
pp. 2543-2576 ◽  
Author(s):  
E. Vázquez-Suñé ◽  
J. Carrera ◽  
I. Tubau ◽  
X. Sánchez-Vila ◽  
A. Soler

Abstract. Evaluating the proportion in which waters from different origins are mixed in a given water sample is relevant for many hydrogeological problems, such as quantifying total recharge, assessing groundwater pollution risks, or managing water resources. Our work is motivated by urban hydrogeology, where waters with different chemical signature can be identified (losses from water supply and sewage networks, infiltration from surface runoff and other water bodies, lateral aquifers inflows, ...). The relative contribution of different sources to total recharge can be quantified by means of solute mass balances, but application is hindered by the large number of potential origins. Hence, the need to incorporate data from a large number of conservative species, the uncertainty in sources concentrations and measurement errors. We present a methodology to compute mixing ratios and end-members composition, which consists of (i) Identification of potential recharge sources, (ii) Selection of tracers, (iii) Characterization of the hydrochemical composition of potential recharge sources and mixed water samples, and (iv) Computation of mixing ratios and reevaluation of end-members. The analysis performed in a data set from samples of the Barcelona city aquifers suggests that the main contributors to total recharge are the water supply network losses (22%), the sewage network losses (30%), rainfall, concentrated in the non-urbanized areas (17%), from runoff infiltration (20%), and the Besòs River (11%). Regarding species, halogens (chloride, fluoride and bromide), sulfate, total nitrogen, and stable isotopes (18O2H, and 34S) behaved quite conservatively. Boron, residual alkalinity, EDTA and Zn did not. Yet, including these species in the computations did not affect significantly the proportion estimations.


2019 ◽  
Author(s):  
Heiko Bozem ◽  
Peter Hoor ◽  
Daniel Kunkel ◽  
Franziska Köllner ◽  
Johannes Schneider ◽  
...  

Abstract. The springtime composition of the Arctic lower troposphere is to a large extent controlled by transport of mid-latitude air masses into the Arctic, whereas during the summer precipitation and natural sources play the most important role. Within the Arctic region, there exists a transport barrier, known as the polar dome, which results from sloping isentropes. The polar dome, which varies in space and time, exhibits a strong influence on the transport of air masses from mid-latitudes, enhancing it during winter and inhibiting it during summer. Furthermore, a definition for the location of the polar dome boundary itself is quite sparse in the literature. We analyzed aircraft based trace gas measurements in the Arctic during two NETCARE airborne field camapigns (July 2014 and April 2015) with the Polar 6 aircraft of Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (AWI), Bremerhaven, Germany, covering an area from Spitsbergen to Alaska (134° W to 17° W and 68° N to 83° N). For the spring (April 2015) and summer (July 2014) season we analyzed transport regimes of mid-latitude air masses travelling to the high Arctic based on CO and CO2 measurements as well as kinematic 10-day back trajectories. The dynamical isolation of the high Arctic lower troposphere caused by the transport barrier leads to gradients of chemical tracers reflecting different local chemical life times and sources and sinks. Particularly gradients of CO and CO2 allowed for a trace gas based definition of the polar dome boundary for the two measurement periods with pronounced seasonal differences. For both campaigns a transition zone rather than a sharp boundary was derived. For July 2014 the polar dome boundary was determined to be 73.5° N latitude and 299–303.5 K potential temperature, respectively. During April 2015 the polar dome boundary was on average located at 66–68.5° N and 283.5–287.5 K. Tracer-tracer scatter plots and probability density functions confirm different air mass properties inside and outside of the polar dome for the July 2014 and April 2015 data set. Using the tracer derived polar dome boundaries the analysis of aerosol data indicates secondary aerosol formation events in the clean summertime polar dome. Synoptic-scale weather systems frequently disturb this transport barrier and foster exchange between air masses from midlatitudes and polar regions. During the second phase of the NETCARE 2014 measurements a pronounced low pressure system south of Resolute Bay brought inflow from southern latitudes that pushed the polar dome northward and significantly affected trace gas mixing ratios in the measurement region. Mean CO mixing ratios increased from 77.9 ± 2.5 ppbv to 84.9 ± 4.7 ppbv from the first period to the second period. At the same time CO2 mixing ratios significantly dropped from 398.16 ± 1.01 ppmv to 393.81 ± 2.25 ppmv. We further analysed processes controlling the recent transport history of air masses within and outside the polar dome. Air masses within the spring time polar dome mainly experienced diabatic cooling while travelling over cold surfaces. In contrast air masses in the summertime polar dome were diabatically heated due to insolation. During both seasons air masses outside the polar dome slowly descended into the Arctic lower troposphere from above caused by radiative cooling. The ascent to the middle and upper troposphere mainly took place outside the Arctic, followed by a northward motion. Our results demonstrate the successful application of a tracer based diagnostic to determine the location of the polar dome boundary.


2016 ◽  
Vol 311 (3) ◽  
pp. F539-F547 ◽  
Author(s):  
Minhtri K. Nguyen ◽  
Dai-Scott Nguyen ◽  
Minh-Kevin Nguyen

Because changes in the plasma water sodium concentration ([Na+]pw) are clinically due to changes in the mass balance of Na+, K+, and H2O, the analysis and treatment of the dysnatremias are dependent on the validity of the Edelman equation in defining the quantitative interrelationship between the [Na+]pw and the total exchangeable sodium (Nae), total exchangeable potassium (Ke), and total body water (TBW) (Edelman IS, Leibman J, O'Meara MP, Birkenfeld LW. J Clin Invest 37: 1236–1256, 1958): [Na+]pw = 1.11(Nae + Ke)/TBW − 25.6. The interrelationship between [Na+]pw and Nae, Ke, and TBW in the Edelman equation is empirically determined by accounting for measurement errors in all of these variables. In contrast, linear regression analysis of the same data set using [Na+]pw as the dependent variable yields the following equation: [Na+]pw = 0.93(Nae + Ke)/TBW + 1.37. Moreover, based on the study by Boling et al. (Boling EA, Lipkind JB. 18: 943–949, 1963), the [Na+]pw is related to the Nae, Ke, and TBW by the following linear regression equation: [Na+]pw = 0.487(Nae + Ke)/TBW + 71.54. The disparities between the slope and y-intercept of these three equations are unknown. In this mathematical analysis, we demonstrate that the disparities between the slope and y-intercept in these three equations can be explained by how the osmotically inactive Na+ and K+ storage pool is quantitatively accounted for. Our analysis also indicates that the osmotically inactive Na+ and K+ storage pool is dynamically regulated and that changes in the [Na+]pw can be predicted based on changes in the Nae, Ke, and TBW despite dynamic changes in the osmotically inactive Na+ and K+ storage pool.


2021 ◽  
Vol 27 (3) ◽  
pp. 8-34
Author(s):  
Tatyana Cherkashina

The article presents the experience of converting non-targeted administrative data into research data, using as an example data on the income and property of deputies from local legislative bodies of the Russian Federation for 2019, collected as part of anticorruption operations. This particular empirical fragment was selected for the pilot study of administrative data, which includes assessing the possibility of integrating scattered fragments of information into a single database, assessing quality of data and their relevance for solving research problems, particularly analysis of high-income strata and the apparent trends towards individualization of private property. The system of indicators for assessing data quality includes their timeliness, availability, interpretability, reliability, comparability, coherence, errors of representation and measurement, and relevance. In the case of the data set in question, measurement errors are more common than representation errors. Overall the article emphasizes the notion that introducing new non-target data into circulation requires their preliminary testing, while data quality assessment becomes distributed both in time and between different subjects. The transition from created data to «obtained» data shifts the functions of evaluating its quality from the researcher-creator to the researcheruser. And though in this case data quality is in part ensured by the legal support for their production, the transformation of administrative data into research data involves assessing a variety of quality measurements — from availability to uniformity and accuracy.


Ocean Science ◽  
2016 ◽  
Vol 12 (5) ◽  
pp. 1067-1090 ◽  
Author(s):  
Marie-Isabelle Pujol ◽  
Yannice Faugère ◽  
Guillaume Taburet ◽  
Stéphanie Dupuy ◽  
Camille Pelloquin ◽  
...  

Abstract. The new DUACS DT2014 reprocessed products have been available since April 2014. Numerous innovative changes have been introduced at each step of an extensively revised data processing protocol. The use of a new 20-year altimeter reference period in place of the previous 7-year reference significantly changes the sea level anomaly (SLA) patterns and thus has a strong user impact. The use of up-to-date altimeter standards and geophysical corrections, reduced smoothing of the along-track data, and refined mapping parameters, including spatial and temporal correlation-scale refinement and measurement errors, all contribute to an improved high-quality DT2014 SLA data set. Although all of the DUACS products have been upgraded, this paper focuses on the enhancements to the gridded SLA products over the global ocean. As part of this exercise, 21 years of data have been homogenized, allowing us to retrieve accurate large-scale climate signals such as global and regional MSL trends, interannual signals, and better refined mesoscale features.An extensive assessment exercise has been carried out on this data set, which allows us to establish a consolidated error budget. The errors at mesoscale are about 1.4 cm2 in low-variability areas, increase to an average of 8.9 cm2 in coastal regions, and reach nearly 32.5 cm2 in high mesoscale activity areas. The DT2014 products, compared to the previous DT2010 version, retain signals for wavelengths lower than  ∼  250 km, inducing SLA variance and mean EKE increases of, respectively, +5.1 and +15 %. Comparisons with independent measurements highlight the improved mesoscale representation within this new data set. The error reduction at the mesoscale reaches nearly 10 % of the error observed with DT2010. DT2014 also presents an improved coastal signal with a nearly 2 to 4 % mean error reduction. High-latitude areas are also more accurately represented in DT2014, with an improved consistency between spatial coverage and sea ice edge position. An error budget is used to highlight the limitations of the new gridded products, with notable errors in areas with strong internal tides.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1862
Author(s):  
Xueliang Duan ◽  
Fengshan Ma ◽  
Jie Guo ◽  
Haijun Zhao ◽  
Hongyu Gu ◽  
...  

The Sanshandao gold mine, which is the largest coastal mine in China, is under threat from seawater intrusion and water inrush. The objective of this study is to determine the water end-members (seawater, freshwater, and brine) of the seepage water in the mine and quantify the proportion of end-members. Non-conservative ions and ion exchange were identified by using hydrogeochemical analysis. Then, the principal component analysis (PCA) was used to identify the end-members of mine water. Three end-members were identified, so a ternary mixture model was applied to compute the mixing ratios. The potential water flow channels and the prevailing supply patterns were inferred by combining the results of mixing ratios with the tectonic and engineering geological conditions. The results indicate that the proportion of seawater in mine water is about 57%, the freshwater is about 16% and the brine is about 27% for the entire mine area, the prevailing supply pattern of seawater was lateral recharge, the water samples which were located in −510 m sublevel or in the northeast of prospecting line 2260 had high proportions of seawater, the freshwater supplied the groundwater mainly through the secondary fractures developed area in a vertical recharge and the influence depth was about −500 m, and F3 was the largest tensile-shear fault in the study area and it was both a watercourse for seawater and fresh water.


1988 ◽  
Vol 254 (1) ◽  
pp. E104-E112
Author(s):  
B. Candas ◽  
J. Lalonde ◽  
M. Normand

The aim of this study is the selection of the number of compartments required for a model to represent the distribution and metabolism of corticotropin-releasing factor (CRF) in rats. The dynamics of labeled rat CRF were measured in plasma for seven rats after a rapid injection. The sampling schedule resulted from the combination of the two D-optimal sampling sets of times corresponding to both rival models. This protocol improved the numerical identifiability of the parameters and consequently facilitated the selection of the relevant model. A three-compartment model fits adequately to the seven individual dynamics and better represents four of them compared with the lower-order model. It was demonstrated, using simulations in which the measurement errors and the interindividual variability of the parameters are included, that his four-to-seven ratio of data sets is consistent with the relevance of the three-compartment model for every individual kinetic data set. Kinetic and metabolic parameters were then derived for each individual rat, their values being consistent with the prolonged effects of CRF on pituitary-adrenocortical secretion.


2018 ◽  
Vol 18 (9) ◽  
pp. 6293-6315 ◽  
Author(s):  
Hans D. Osthoff ◽  
Charles A. Odame-Ankrah ◽  
Youssef M. Taha ◽  
Travis W. Tokarek ◽  
Corinne L. Schiller ◽  
...  

Abstract. The nocturnal nitrogen oxides, which include the nitrate radical (NO3), dinitrogen pentoxide (N2O5), and its uptake product on chloride containing aerosol, nitryl chloride (ClNO2), can have profound impacts on the lifetime of NOx (= NO + NO2), radical budgets, and next-day photochemical ozone (O3) production, yet their abundances and chemistry are only sparsely constrained by ambient air measurements. Here, we present a measurement data set collected at a routine monitoring site near the Abbotsford International Airport (YXX) located approximately 30 km from the Pacific Ocean in the Lower Fraser Valley (LFV) on the west coast of British Columbia. Measurements were made from 20 July to 4 August 2012 and included mixing ratios of ClNO2, N2O5, NO, NO2, total odd nitrogen (NOy), O3, photolysis frequencies, and size distribution and composition of non-refractory submicron aerosol (PM1). At night, O3 was rapidly and often completely removed by dry deposition and by titration with NO of anthropogenic origin and unsaturated biogenic hydrocarbons in a shallow nocturnal inversion surface layer. The low nocturnal O3 mixing ratios and presence of strong chemical sinks for NO3 limited the extent of nocturnal nitrogen oxide chemistry at ground level. Consequently, mixing ratios of N2O5 and ClNO2 were low (< 30 and < 100 parts-per-trillion by volume (pptv) and median nocturnal peak values of 7.8 and 7.9 pptv, respectively). Mixing ratios of ClNO2 frequently peaked 1–2 h after sunrise rationalized by more efficient formation of ClNO2 in the nocturnal residual layer aloft than at the surface and the breakup of the nocturnal boundary layer structure in the morning. When quantifiable, production of ClNO2 from N2O5 was efficient and likely occurred predominantly on unquantified supermicron-sized or refractory sea-salt-derived aerosol. After sunrise, production of Cl radicals from photolysis of ClNO2 was negligible compared to production of OH from the reaction of O(1D) + H2O except for a short period after sunrise.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2510 ◽  
Author(s):  
Janie Masse-Dufresne ◽  
Paul Baudron ◽  
Florent Barbecot ◽  
Marc Patenaude ◽  
Coralie Pontoreau ◽  
...  

At many bank filtration (BF) sites, mixing ratios between the contributing sources of water are typically regarded as values with no temporal variation, even though hydraulic conditions and pumping regimes can be transient. This study illustrates how anthropic and meteorological forcings influence the origin of the water of a BF system that interacts with two lakes (named A and B). The development of a time-varying binary mixing model based on electrical conductivity (EC) allowed the estimation of mixing ratios over a year. A sensitivity analysis quantified the importance of considering the temporal variability of the end-members for reliable results. The model revealed that the contribution from Lake A may vary from 0% to 100%. At the wells that were operated continuously at >1000 m3/day, the contribution from Lake A stabilized between 54% and 78%. On the other hand, intermittent and occasional pumping regimes caused the mixing ratios to be controlled by indirect anthropic and/or meteorological forcing. The flow conditions have implications for the quality of the bank filtrate, as highlighted via the spatiotemporal variability of total Fe and Mn concentrations. We therefore propose guidelines for rapid decision-making regarding the origin and quality of the pumped drinking water.


Sign in / Sign up

Export Citation Format

Share Document