scholarly journals PERSiST: a flexible rainfall-runoff modelling toolkit for use with the INCA family of models

2014 ◽  
Vol 18 (2) ◽  
pp. 855-873 ◽  
Author(s):  
M. N. Futter ◽  
M. A. Erlandsson ◽  
D. Butterfield ◽  
P. G. Whitehead ◽  
S. K. Oni ◽  
...  

Abstract. Runoff generation processes and pathways vary widely between catchments. Credible simulations of solute and pollutant transport in surface waters are dependent on models which facilitate appropriate, catchment-specific representations of perceptual models of the runoff generation process. Here, we present a flexible, semi-distributed landscape-scale rainfall-runoff modelling toolkit suitable for simulating a broad range of user-specified perceptual models of runoff generation and stream flow occurring in different climatic regions and landscape types. PERSiST (the Precipitation, Evapotranspiration and Runoff Simulator for Solute Transport) is designed for simulating present-day hydrology; projecting possible future effects of climate or land use change on runoff and catchment water storage; and generating hydrologic inputs for the Integrated Catchments (INCA) family of models. PERSiST has limited data requirements and is calibrated using observed time series of precipitation, air temperature and runoff at one or more points in a river network. Here, we apply PERSiST to the river Thames in the UK and describe a Monte Carlo tool for model calibration, sensitivity and uncertainty analysis.

2013 ◽  
Vol 10 (7) ◽  
pp. 8635-8681 ◽  
Author(s):  
M. N. Futter ◽  
M. A. Erlandsson ◽  
D. Butterfield ◽  
P. G. Whitehead ◽  
S. K. Oni ◽  
...  

Abstract. While runoff is often a first-order control on water quality, runoff generation processes and pathways can vary widely between catchments. Credible simulations of solute and pollutant transport in surface waters are dependent on models which facilitate appropriate representations of perceptual models of the runoff generation process. With a few exceptions, models used in solute transport simulations enforce a single, potentially inappropriate representation of the runoff generation process. Here, we present a flexible, semi-distributed landscape scale rainfall-runoff model suitable for simulating a broad range of user-specified perceptual models of runoff generation and stream flow occurring in different climatic regions and landscape types. PERSiST, the Precipitation, Evapotranspiration and Runoff Simulator for Solute Transport; is designed for simulating present day conditions and projecting possible future effects of climate or land use change on runoff, catchment water storage and solute transport. PERSiST has limited data requirements and is calibrated using observed time series of precipitation, air temperature and runoff at one or more points in a river network. Here, we present a first application of the model to the Thames River in the UK and describe a Monte Carlo tool for parameter optimization and sensitivity analysis.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2324
Author(s):  
Peng Lin ◽  
Pengfei Shi ◽  
Tao Yang ◽  
Chong-Yu Xu ◽  
Zhenya Li ◽  
...  

Hydrological models for regions characterized by complex runoff generation process been suffer from a great weakness. A delicate hydrological balance triggered by prolonged wet or dry underlying condition and variable extreme rainfall makes the rainfall-runoff process difficult to simulate with traditional models. To this end, this study develops a novel vertically mixed model for complex runoff estimation that considers both the runoff generation in excess of infiltration at soil surface and that on excess of storage capacity at subsurface. Different from traditional models, the model is first coupled through a statistical approach proposed in this study, which considers the spatial heterogeneity of water transport and runoff generation. The model has the advantage of distributed model to describe spatial heterogeneity and the merits of lumped conceptual model to conveniently and accurately forecast flood. The model is tested through comparison with other four models in three catchments in China. The Nash–Sutcliffe efficiency coefficient and the ratio of qualified results increase obviously. Results show that the model performs well in simulating various floods, providing a beneficial means to simulate floods in regions with complex runoff generation process.


2019 ◽  
Vol 23 (6) ◽  
pp. 2665-2678 ◽  
Author(s):  
Davide Zoccatelli ◽  
Francesco Marra ◽  
Moshe Armon ◽  
Yair Rinat ◽  
James A. Smith ◽  
...  

Abstract. Catchment-scale hydrological studies on drylands are lacking because of the scarcity of consistent data: observations are often available at the plot scale, but their relevance for the catchment scale remains unclear. A database of 24 years of stream gauge discharge and homogeneous high-resolution radar data over the eastern Mediterranean allows us to describe the properties of floods over catchments spanning from desert to Mediterranean climates, and we note that the data set is mostly of moderate intensity floods. Comparing two climatic regions, desert and Mediterranean, we can better identify specific rainfall-runoff properties. Despite the large differences in rainfall forcing between the two regions, the resulting unit peak discharges and runoff coefficients are comparable. Rain depth and antecedent conditions are the most important properties to shape flood response in Mediterranean areas. In deserts, instead, storm core properties display a strong correlation with unit peak discharge and, to a lesser extent, with runoff coefficient. In this region, an inverse correlation with mean catchment annual precipitation suggests also a strong influence of local surface properties. Preliminary analyses suggest that floods in catchments with wet headwater and dry lower section are more similar to desert catchments, with a strong influence of storm core properties on runoff generation.


Author(s):  
Ben Jarihani ◽  
Roy C. Sidle ◽  
Rebecca Bartley ◽  
Christian H. Roth ◽  
Scott Wilkinson

Rainfall is the main driver of hydrological processes in dryland environments and characterising the rainfall variability and processes of runoff generation are critical for understanding ecosystem function of catchments. Using remote sensing and in situ data sets, we assess the spatial and temporal variability of the rainfall, rainfall-runoff response, and effects of antecedent soil moisture and ground cover at different spatial scales on runoff coefficients in the Upper Burdekin catchment, northeast Australia, which is a major contributor of sediment and nutrients to the Great Barrier Reef. The high temporal and spatial variability of rainfall exerts significant controls on runoff generation processes. Rainfall amount and intensity are the primary runoff controls, and runoff coefficients for wet antecedent conditions were higher than for dry conditions. The majority of runoff occurred via surface runoff generation mechanisms, with subsurface runoff likely contributing little runoff due to the intense nature of rainfall events. At annual to seasonal temporal scales and for relatively large catchments, we could not detect a significant effect of ground cover on runoff. We conclude that in the range of moderate to large catchments (193 – 36,260 km2) runoff generation processes are sensitive to both antecedent soil moisture and ground cover. A higher runoff-ground cover correlation in drier months with sparse ground cover highlighted the critical role of cover at the onset of the wet season and how runoff generation is more sensitive to cover in drier months than in wetter months. The monthly water balance analysis indicates that runoff generation in wetter months (January and February) is partially influenced by saturation overland flow, most likely confined to saturated soils in riparian corridors, swales, and areas of shallow soil. By March and continuing through October, the soil ‘bucket’ progressively empties by evapotranspiration, and Hortonian overland flow becomes the dominant, if not exclusive, flow generation process. The results of this study can be used to better understand the rainfall-runoff relationships in dryland environments and subsequent exposure of coral reef ecosystems in Australia and elsewhere to terrestrial runoff.


2021 ◽  
Author(s):  
Suman Kumar Padhee ◽  
Subashisa Dutta

<p>A recent initiative by the hydrologic community identified processes that control hillslope-riparian-stream-groundwater interactions as one of the major unsolved scientific problems in Hydrology. It is a long-time argument among hydrologists whether to eliminate the minor details from field-based costing a lot of time, effort, and resources to understand the hydrological process in watershed scale. The modelling approaches are helpful is these cases by focusing on the dominant controllers and might/might'nt bypassing the implications from minor details. In this work, a conceptual semi-distributed rainfall-runoff model for hilly watersheds is used with satellite-based hydrometeorological inputs to parameterize, and thus understand by calibration and validation, at Koshi River Basin, a partly hilly watershed in Himalaya. The semi-distributed model is operated by dividing the river basin into small grids of around 1km<sup>2</sup>, each representing a micro-watershed. Majority of the model concept is drawn from fill and spill approach from previous literature, observations from plot-scale hillslope experiments, and macropore characterization from dye-tracer experiments, which are upscaled at micro-watershed scale. The parameterization in the rainfall-runoff model includes the daily average variables namely, threshold for runoff generation (<em>T</em>), gradient of runoff generation rate (<em>S</em>), saturated hydraulic conductivity for hillslope aquifers (<em>Ksat</em>), and aquifer thickness limit (<em>D</em>). Variable ranges of these parameters were simulated to find the best values (<em>T</em> = 1±0.25cm; <em>S</em> = 0.6 – 0.1; <em>Ksat</em> ≈ 10<sup>5</sup> – 10<sup>10</sup> times original Ksat; and <em>D </em>= 1m). These ranges resulted in over (NSE = 0.6; R<sup>2</sup> = 0.65) during calibration and validation for daily flow volume at the outlet. In these simulations, the <em>Ksat </em>multiplied with factors at several orders higher scale and producing good NSE values shows domination of preferential pathways in runoff generation process. This might represent a flow similar to that of overland flow affecting the surface runoff volume at river basin scale. This model could be used for water budgeting studies in hilly watersheds where several hillslopes dominated by macropores are present.</p>


2018 ◽  
Author(s):  
Davide Zoccatelli ◽  
Francesco Marra ◽  
Moshe Armon ◽  
Yair Rinat ◽  
James A. Smith ◽  
...  

Abstract. Catchment scale hydrological studies on drylands are lacking because of the scarcity of consistent data: observations are often available at the plot scale, but their relevance for the catchment scale remains unclear. A database of 24 years of stream gauge discharge and homogeneous high-resolution radar data over the eastern Mediterranean allows to describe the properties of moderate floods over catchments spanning from Desert to Mediterranean climates. Comparing two climatic regions, Desert and Mediterranean, we are able to better identify specific rainfall-runoff properties. Despite the large differences in rainfall forcing between the two regions, the resulting unit peak discharges and runoff coefficients are comparable. In Mediterranean areas rain depth and antecedent conditions are the most important properties to shape flood response. In Deserts, instead, storm core properties display a strong correlation with unit peak discharge and, to a less extent, with runoff coefficient. In this region, an inverse correlation with mean catchment annual precipitation suggests also a strong influence of local surface properties. Preliminary analyses suggest that floods in catchments with wet headwater and dry lower section are more similar to desert catchments, with a strong influence of storm core properties on runoff generation.


Author(s):  
Long Sun ◽  
Zhijia Li ◽  
Ke Zhang ◽  
Tingting Jiang

Abstract The evaluation of hydrological models for a specific catchment is normally based on the model performance according to the selected performance criteria. However, the catchment rainfall-runoff characteristics could be used for the selection of a suitable hydrological model in study area, which, also, for the problem solve of the model application in ungauged basins. In this study, six conceptual models were applied in three semi-humid or semi-arid catchments to investigate the correlation between catchment characteristics and model structure selection. In addition, the impacts of precipitation and topography in model simulation were analyzed. The results show that runoff generation are highly impacted by catchment topographic index and land cover change, and the influence of slope for river channel is greater than mean slope for the whole catchment due to the runoff generation for partial area. For the catchments under similar climate condition, the impact of topographic features for runoff generation process is greater than the difference of precipitation. It indicates that for a specific catchment, the selection of appropriate model should base on better understanding of the rainfall-runoff relationship. The method of incorporating additional runoff generation module in the traditional model can significantly improve the accuracy of flood simulation.


Author(s):  
J. D. Hughes ◽  
J. Vaze

Abstract. "Non-stationarity" with reference to hydrology is a term applied to many situations (Milly et al., 2008). While climate change non-stationarity is often examined, these effects can provide a test for assumptions of runoff generation process impliedin rainfall–runoff (RR) models. Observations from South-western Australia (SWA) over the past 40 years show a decline in rainfall and reductions in runoff. Runoff and rainfall relationships in SWA show a significant shift over the past 40 years suggesting a change in runoff generation and catchment state. This has challenged the nature of assumed runoff generation process in SWA as well as the veracity of conceptual RR model structure. We expand on some of the lessons learned from SWA and discuss the climatic and geomorphic conditions that may make reasonable predictions of runoff very difficult with RR models calibrated in traditional ways. Catchment storage has a significant interaction with runoff generation and we examine the situations where these may change in the longer term. We suggest some strategies in terms of model structure and calibration that may improve predictive performance in such situations.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1237 ◽  
Author(s):  
Caihong Hu ◽  
Li Zhang ◽  
Qiang Wu ◽  
Shan-e-hyder Soomro ◽  
Shengqi Jian

Runoff reduction in most river basins in China has become a hotpot in recent years. The Gushanchuan river, a primary tributary of the middle Yellow river, Northern China, showed a significant downward trend in the last century. Little is known regarding the relative contributions of changing environment to the observed hydrological trends and response on the runoff generation process in its watershed. On the basis of observed hydrological and meteorological data from 1965–2010, the Mann-Kendall trend test and climate elasticity method were used to distinguish the effects of climate change and human activities on runoff in the Gushanchuan basin. The results indicate that the runoff in the Gushanchuan Basin has experienced significant declines as large as 77% from 1965 to 2010, and a mutation point occurred around 1997; the contribution rate of climate change to runoff change is 12.9–15.1%, and the contribution rate of human activities to runoff change is 84.9–87.1%. Then we divided long-term data sequence into two stages around the mutation point, and analyzed runoff generation mechanisms based on land use and cover changes (LUCC). We found that the floods in the Gushanchuan Basin were still dominated by Excess-infiltration runoff, but the proportion in 1965–1997 and 1998–2010 decreased gradually (68.46% and 45.83% in turn). The proportion of Excess-storage runoff and Mixed runoff has increased, which means that the runoff is made up of more runoff components. The variation law of the LUCC indicates that the forest area increased by 49.61%, the confluence time increased by 50.42%, and the water storage capacity of the watershed increased by 30.35%.


2004 ◽  
Vol 8 (5) ◽  
pp. 903-922 ◽  
Author(s):  
M. Bari ◽  
K. R. J. Smettem

Abstract. A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall–runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, "Ernies" (control, fully forested) and "Lemon" (54% cleared) are in a zone of mean annual rainfall of 725 mm, while "Salmon" (control, fully forested) and "Wights" (100% cleared) are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall–runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i) immediately after clearing due to reduced evapotranspiration, and (ii) through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i) an upper zone unsaturated store, (ii) a transient stream zone store, (ii) a lower zone unsaturated store and (iv) a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and predicted monthly hydrographs. The observed and predicted monthly runoff for all catchments matched well with coefficients of determination (R2) ranging from 0.68 to 0.87. Predictions were relatively poor for: (i) the Ernies catchment (lowest rainfall, forested), and (ii) months with very high flows. Overall, the predicted mean annual streamflow was within ±8% of the observed values. Keywords: monthly streamflow, land use change, conceptual model, data-based approach, groundwater


Sign in / Sign up

Export Citation Format

Share Document