scholarly journals Downscaling GCM data for climate change impact assessments on rainfall: a practical application for the Brahmani-Baitarani river basin

Author(s):  
R. J. Dahm ◽  
U. K. Singh ◽  
M. Lal ◽  
M. Marchand ◽  
F. C. Sperna Weiland ◽  
...  

Abstract. The delta of the Brahmani-Baitarani river basin, located in the eastern part of India, frequently experiences severe floods. For flood risk analysis and water system design, insights in the possible future changes in extreme rainfall events caused by climate change are of major importance. There is a wide range of statistical and dynamical downscaling and bias-correction methods available to generate local climate projections that also consider changes in rainfall extremes. Yet the applicability of these methods highly depends on availability of meteorological observations at local level. In the developing countries data and model availability may be limited, either due to the lack of actual existence of these data or because political data sensitivity hampers open sharing. We here present the climate change analysis we performed for the Brahmani-Baitarani river basin focusing on changes in four selected indices for rainfall extremes using data from three performance-based selected GCMs that are part of the 5th Coupled Model Intercomparison Project (CMIP5). We apply and compare two widely used and easy to implement bias correction approaches. These methods were selected as best suited due to the absence of reliable long historic meteorological data. We present the main changes – likely increases in monsoon rainfall especially in the Mountainous regions and a likely increase of the number of heavy rain days. In addition, we discuss the gap between state-of-the-art downscaling techniques and the actual options one is faced with in local scale climate change assessments.

2018 ◽  
Vol 10 (4) ◽  
pp. 782-798
Author(s):  
R. J. Dahm ◽  
F. C. Sperna Weiland ◽  
U. K. Singh ◽  
M. Lal ◽  
M. Marchand ◽  
...  

Abstract Severe floods are common in the Brahmani-Baitarani river basin in India. Insights into the implications of climate change on rainfall extremes and resulting floods are of major importance to improve flood risk analysis and water system design. A wide range of statistical and dynamical downscaling and bias-correction methods for the generation of local climate projections exists. Yet, the applicability of these methods highly depends on availability of meteorological data. In developing countries, data availability is often limited, either because data do not exist or because of restrictions on use. We here present a climate change analysis for the Brahmani-Baitarani river basin focusing on changes in rainfall using data from three GCMs from the Fifth Coupled Model Intercomparison Project (CMIP5) that were selected based on their performance. We apply and compare two widely used and easy to implement bias-correction methods. These were selected because reliable open historical meteorological datasets required for advanced methods were not available. The results indicate likely increases in monsoon rainfall especially in the mountainous regions and likely increases in the number of heavy rain days. We conclude with a discussion on the gap between state-of-the-art downscaling techniques and the actual options in regional climate change assessments.


2013 ◽  
Vol 14 (3) ◽  
pp. 963-976 ◽  
Author(s):  
E. Kerkhoven ◽  
T. Y. Gan

Abstract The research objectives are to estimate differences between the potential impact of climatic change to the Athabasca River basin (ARB) and Fraser River basin (FRB) of Canada with and without considering shifts in vegetation patterns induced by climate change and how much the difference will depend on vegetation types and climate. The hydrologic effects of vegetation shifts on ARB and FRB were estimated by applying the Mapped Atmosphere–Plant–Soil System (MAPSS) simulated results based on the Intergovernmental Panel on Climate Change’s First and Second Assessment Report general circulation model (GCM) scenarios to the modified Interaction Soil–Biosphere–Atmosphere (MISBA) scheme. According to MAPSS, vegetation shifts in mountainous regions of FRB are expected to be dominated by conifer/broadleaf competition, while in ARB, climate projections of MAPSS predicted a southern expansion of the boreal forest. Because of differences in sublimation, there is a tendency for more snow to accumulate in open grassland than forests. Furthermore, changes to simulated mean annual maximum snowpack, runoff, and basin area covered by grassland are positively correlated to each other. Generally, a 4% increase in snow water equivalent (SWE) results in a 1% increase in mean annual runoff. These relationships hold true in both basins over a wide range of GCM-projected climate conditions and vegetation responses, suggesting that most changes in mean annual flow can be attributed to changes in SWE. Because of the different modeling approaches between MAPSS and MISBA, it seems that the treatment of these processes in vegetation and hydrologic models should be similar before conclusions can be drawn from various stand-alone simulations. Ideally, a land surface scheme should be coupled with a vegetation model in future studies.


Author(s):  
Ganiyu Titilope Oyerinde ◽  
Fabien C.C. Hountondji ◽  
Agnide E. Lawin ◽  
Ayo J. Odofin ◽  
Abel Afouda ◽  
...  

Climate simulations in West Africa have been attributed with large uncertainties. Global climate projections are not consistent with changes in observations at the regional or local level of the Niger basin, making management of hydrological projects in the basin uncertain. This study evaluates the potential of using the quantile mapping bias correction to improve the Coupled Model Intercomparison Project (CMIP5) outputs for use in hydrology impact studies. Rainfall and temperature projections from 8 CMIP5 Global Climate Models (GCM) were bias corrected using the quantile mapping approach. Impacts of climate change was evaluated with bias corrected rainfall, temperature and potential evapotranspiration (PET). The IHACRES hydrological model was adapted to the Niger basin and used to simulate impacts of climate change on discharge under present and future conditions. Bias correction significantly improved the accuracy of rainfall and temperature simulations compared to observations. Nash coefficient (NSE) for monthly rainfall comparisons of 8 GCMs to the observed was improved by bias correction from 0.69 to 0.84. The standard deviations among the 8 GCM rainfall data were significantly reduced from 0.13 to 0.03. Increasing rainfall, temperature, PET and river discharge were projected for all GCMs used in this study under the RCP8.5 scenario. These results will help improving projections and contribute to the development of sustainable climate change adaptation strategies.


2021 ◽  
Vol 14 (1) ◽  
pp. 115
Author(s):  
Yanyun Xiang ◽  
Yi Wang ◽  
Yaning Chen ◽  
Qifei Zhang

Quantification of the impacts of climate change on streamflow and other hydrological parameters is of high importance and remains a challenge in arid areas. This study applied a modified distributed hydrological model (HEC-HMS) to the Yarkant River basin, China to assess hydrological changes under future climate change scenarios. Climate change was assessed based on six CMIP6 general circulation models (GCMs), three shared socio-economic pathways (SSP126, SSP245, SSP370), and several bias correction methods, whereas hydrological regime changes were assessed over two timeframes, referred to as the near future (2021–2049) and the far future (2071–2099). Results demonstrate that the DM (distribution mapping) and LOCI (local intensity scaling) bias correction methods most closely fit the projections of temperature and precipitation, respectively. The climate projections predicted a rise in temperature of 1.72–1.79 °C under the three SSP scenarios for the near future, and 3.76–6.22 °C under the three SSPs for the far future. Precipitation increased by 10.79–12% in the near future, and by 14.82–29.07% during the far future. It is very likely that streamflow will increase during both the near future (10.62–19.2%) and far future (36.69–70.4%) under all three scenarios. The increase in direct flow will be greater than baseflow. Summer and winter streamflow will increase the most, while the increase in streamflow was projected to reach a maximum during June and July over the near future. Over the far future, runoff reached a peak in May and June. The timing of peak streamflow will change from August to July in comparison to historical records. Both high- and low-flow magnitudes during March, April, and May (MAM) as well as June, July, and August (JJA) will increase by varying degrees, whereas the frequency of low flows will decrease during both MAM and JJA. High flow frequency in JJA was projected to decrease. Overall, our results reveal that the hydrological regime of the Yarkant River is likely to change and will be characterized by larger seasonal uncertainty and more frequent extreme events due to significant warming over the two periods. These changes should be seriously considered during policy development.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 483
Author(s):  
Ümit Yıldırım ◽  
Cüneyt Güler ◽  
Barış Önol ◽  
Michael Rode ◽  
Seifeddine Jomaa

This study investigates the impacts of climate change on the hydrological response of a Mediterranean mesoscale catchment using a hydrological model. The effect of climate change on the discharge of the Alata River Basin in Mersin province (Turkey) was assessed under the worst-case climate change scenario (i.e., RCP8.5), using the semi-distributed, process-based hydrological model Hydrological Predictions for the Environment (HYPE). First, the model was evaluated temporally and spatially and has been shown to reproduce the measured discharge consistently. Second, the discharge was predicted under climate projections in three distinct future periods (i.e., 2021–2040, 2046–2065 and 2081–2100, reflecting the beginning, middle and end of the century, respectively). Climate change projections showed that the annual mean temperature in the Alata River Basin rises for the beginning, middle and end of the century, with about 1.35, 2.13 and 4.11 °C, respectively. Besides, the highest discharge timing seems to occur one month earlier (February instead of March) compared to the baseline period (2000–2011) in the beginning and middle of the century. The results show a decrease in precipitation and an increase in temperature in all future projections, resulting in more snowmelt and higher discharge generation in the beginning and middle of the century scenarios. However, at the end of the century, the discharge significantly decreased due to increased evapotranspiration and reduced snow depth in the upstream area. The findings of this study can help develop efficient climate change adaptation options in the Levant’s coastal areas.


2021 ◽  
Vol 14 (10) ◽  
pp. 6177-6195
Author(s):  
Paul R. Halloran ◽  
Jennifer K. McWhorter ◽  
Beatriz Arellano Nava ◽  
Robert Marsh ◽  
William Skirving

Abstract. The marine impacts of climate change on our societies will be largely felt through coastal waters and shelf seas. These impacts involve sectors as diverse as tourism, fisheries and energy production. Projections of future marine climate change come from global models. Modelling at the global scale is required to capture the feedbacks and large-scale transport of physical properties such as heat, which occur within the climate system, but global models currently cannot provide detail in the shelf seas. Version 2 of the regional implementation of the Shelf Sea Physics and Primary Production (S2P3-R v2.0) model bridges the gap between global projections and local shelf-sea impacts. S2P3-R v2.0 is a highly simplified coastal shelf model, computationally efficient enough to be run across the shelf seas of the whole globe. Despite the simplified nature of the model, it can display regional skill comparable to state-of-the-art models, and at the scale of the global (excluding high latitudes) shelf seas it can explain >50 % of the interannual sea surface temperature (SST) variability in ∼60 % of grid cells and >80 % of interannual variability in ∼20 % of grid cells. The model can be run at any resolution for which the input data can be supplied, without expert technical knowledge, and using a modest off-the-shelf computer. The accessibility of S2P3-R v2.0 places it within reach of an array of coastal managers and policy makers, allowing it to be run routinely once set up and evaluated for a region under expert guidance. The computational efficiency and relative scientific simplicity of the tool make it ideally suited to educational applications. S2P3-R v2.0 is set up to be driven directly with output from reanalysis products or daily atmospheric output from climate models such as those which contribute to the sixth phase of the Climate Model Intercomparison Project, making it a valuable tool for semi-dynamical downscaling of climate projections. The updates introduced into version 2.0 of this model are primarily focused around the ability to geographical relocate the model, model usability and speed but also scientific improvements. The value of this model comes from its computational efficiency, which necessitates simplicity. This simplicity leads to several limitations, which are discussed in the context of evaluation at regional and global scales.


Author(s):  
Dao Nguyen Khoi ◽  
Truong Thao Sam ◽  
Pham Thi Loi ◽  
Bui Viet Hung ◽  
Van Thinh Nguyen

Abstract In this paper, the responses of hydro-meteorological drought to changing climate in the Be River Basin located in Southern Vietnam are investigated. Climate change scenarios for the study area were statistically downscaled using the Long Ashton Research Station Weather Generator tool, which incorporates climate projections from Coupled Model Intercomparison Project 5 (CMIP5) based on an ensemble of five general circulation models (Can-ESM2, CNRM-CM5, HadGEM2-AO, IPSL-CM5A-LR, and MPI-ESM-MR) under two Representative Concentration Pathway (RCP) scenarios (RCP4.5 and RCP8.5). The Soil and Water Assessment Tool model was employed to simulate streamflow for the baseline time period and three consecutive future 20 year periods of 2030s (2021–2040), 2050s (2041–2060), and 2070s (2061–2080). Based on the simulation results, the Standardized Precipitation Index and Standardized Discharge Index were estimated to evaluate the features of hydro-meteorological droughts. The hydrological drought has 1-month lag time from the meteorological drought and the hydro-meteorological droughts have negative correlations with the El Niño Southern Oscillation and Pacific Decadal Oscillation. Under the climate changing impacts, the trends of drought severity will decrease in the future; while the trends of drought frequency will increase in the near future period (2030s), but decrease in the following future periods (2050 and 2070s). The findings of this study can provide useful information to the policy and decisionmakers for a better future planning and management of water resources in the study region.


2017 ◽  
Vol 21 (4) ◽  
pp. 2143-2161 ◽  
Author(s):  
Yacouba Yira ◽  
Bernd Diekkrüger ◽  
Gero Steup ◽  
Aymar Yaovi Bossa

Abstract. This study evaluates climate change impacts on water resources using an ensemble of six regional climate models (RCMs)–global climate models (GCMs) in the Dano catchment (Burkina Faso). The applied climate datasets were performed in the framework of the COordinated Regional climate Downscaling Experiment (CORDEX-Africa) project.After evaluation of the historical runs of the climate models' ensemble, a statistical bias correction (empirical quantile mapping) was applied to daily precipitation. Temperature and bias corrected precipitation data from the ensemble of RCMs–GCMs was then used as input for the Water flow and balance Simulation Model (WaSiM) to simulate water balance components.The mean hydrological and climate variables for two periods (1971–2000 and 2021–2050) were compared to assess the potential impact of climate change on water resources up to the middle of the 21st century under two greenhouse gas concentration scenarios, the Representative Concentration Pathways (RCPs) 4.5 and 8.5. The results indicate (i) a clear signal of temperature increase of about 0.1 to 2.6 °C for all members of the RCM–GCM ensemble; (ii) high uncertainty about how the catchment precipitation will evolve over the period 2021–2050; (iii) the applied bias correction method only affected the magnitude of the climate change signal; (iv) individual climate models results lead to opposite discharge change signals; and (v) the results for the RCM–GCM ensemble are too uncertain to give any clear direction for future hydrological development. Therefore, potential increase and decrease in future discharge have to be considered in climate change adaptation strategies in the catchment. The results further underline on the one hand the need for a larger ensemble of projections to properly estimate the impacts of climate change on water resources in the catchment and on the other hand the high uncertainty associated with climate projections for the West African region. A water-energy budget analysis provides further insight into the behavior of the catchment.


2014 ◽  
Vol 11 (11) ◽  
pp. 12659-12696 ◽  
Author(s):  
G. H. Fang ◽  
J. Yang ◽  
Y. N. Chen ◽  
C. Zammit

Abstract. Water resources are essential to the ecosystem and social economy in the desert and oasis of the arid Tarim River Basin, Northwest China, and expected to be vulnerable to climate change. Regional Climate Models (RCM) have been proved to provide more reliable results for regional impact study of climate change (e.g. on water resources) than GCM models. However, it is still necessary to apply bias correction before they are used for water resources research due to often considerable biases. In this paper, after a sensitivity analysis on input meteorological variables based on Sobol' method, we compared five precipitation correction methods and three temperature correction methods to the output of a RCM model with its application to the Kaidu River Basin, one of the headwaters of the Tarim River Basin. Precipitation correction methods include Linear Scaling (LS), LOCal Intensity scaling (LOCI), Power Transformation (PT), Distribution Mapping (DM) and Quantile Mapping (QM); and temperature correction methods include LS, VARIance scaling (VARI) and DM. These corrected precipitation and temperature were compared to the observed meteorological data, and then their impacts on streamflow were also compared by driving a distributed hydrologic model. The results show: (1) precipitation, temperature, solar radiation are sensitivity to streamflow while relative humidity and wind speed are not, (2) raw RCM simulations are heavily biased from observed meteorological data, which results in biases in the simulated streamflows, and all bias correction methods effectively improved theses simulations, (3) for precipitation, PT and QM methods performed equally best in correcting the frequency-based indices (e.g. SD, percentile values) while LOCI method performed best in terms of the time series based indices (e.g. Nash–Sutcliffe coefficient, R2), (4) for temperature, all bias correction methods performed equally well in correcting raw temperature. (5) For simulated streamflow, precipitation correction methods have more significant influence than temperature correction methods and the performances of streamflow simulations are consistent with these of corrected precipitation, i.e. PT and QM methods performed equally best in correcting flow duration curve and peak flow while LOCI method performed best in terms of the time series based indices. The case study is for an arid area in China based on a specific RCM and hydrologic model, but the methodology and some results can be applied to other area and other models.


Sign in / Sign up

Export Citation Format

Share Document