scholarly journals Mapping the suitability of groundwater dependent vegetation in a semi-arid Mediterranean area

2018 ◽  
Author(s):  
Inês Gomes Marques ◽  
João Nascimento ◽  
Rita M. Cardoso ◽  
Filipe Miguéns ◽  
Maria Teresa Condesso de Melo ◽  
...  

Abstract. The forecasted groundwater resource depletion under future climatic conditions will greatly influence subsurface groundwater dependent ecosystems and their associated vegetation. In the Mediterranean region this will create harsh conditions for the maintenance of agroforestry systems dependent on groundwater, such as cork oak woodlands. The threat of increasing aridity conditions will affect their productivity and eventually induce a shift in their geographical distribution. Thus, characterizing and modelling the relationship between environmental conditions and subsurface groundwater dependent vegetation (subsurface GDV) will allow to identify the main drivers controlling its distribution and predict future impacts of climate change. In this study, we built a model that explains subsurface GDV distribution in southern Portugal from climatic, hydrological and topographic environmental variables. To achieve this, we relied on the density of Quercus suber, Quercus ilex and Pinus pinea as proxy species of subsurface GDV. Model fitting was performed between the proxy species Kernel density and the selected environmental predictors using (1) a simple linear model and (2) a Geographically Weighted Regression (GWR), to account for auto-correlation of the spatial data and residuals. When comparing the results of both models, the GWR modelling results showed improved goodness of fitting, as opposed to the simple linear model. Soil type was the main driver of subsurface GDV density closely followed by the aridity index. Groundwater depth did not appear to be as pertinent in the model as initially expected. Model predictor coefficients were used as weighting factors for multicriteria analysis, to create a suitability map to the subsurface GDV in southern Portugal. A validation of the resulting map was performed using independent data of integrated potential distribution of each proxy tree species in the region and overall, there was an accordance between areas of good suitability to subsurface GDV. The model was considered reliable to predict the distribution of the studied vegetation, however, lack of data quality and information was shown to be the main cause for suitability discrepancies between maps. Our new methodology on mapping of subsurface GDV's will allow to predict the evolution of the distribution of subsurface GDV according to climate change scenarios and aid stakeholder decision-making concerning priority areas of water resources management.

2019 ◽  
Vol 23 (9) ◽  
pp. 3525-3552 ◽  
Author(s):  
Inês Gomes Marques ◽  
João Nascimento ◽  
Rita M. Cardoso ◽  
Filipe Miguéns ◽  
Maria Teresa Condesso de Melo ◽  
...  

Abstract. Mapping the suitability of groundwater-dependent vegetation in semi-arid Mediterranean areas is fundamental for the sustainable management of groundwater resources and groundwater-dependent ecosystems (GDEs) under the risks of climate change scenarios. For the present study the distribution of deep-rooted woody species in southern Portugal was modeled using climatic, hydrological and topographic environmental variables. To do so, Quercus suber, Quercus ilex and Pinus pinea were used as proxy species to represent the groundwater-dependent vegetation (GDV). Model fitting was performed between the proxy species Kernel density and the selected environmental predictors using (1) a simple linear model and (2) a geographically weighted regression (GWR) to account for autocorrelation of the spatial data and residuals. When comparing the results of both models, the GWR modeling results showed improved goodness of fit as opposed to the simple linear model. Climatic indices were the main drivers of GDV density, followed by a much lower influence by groundwater depth, drainage density and slope. Groundwater depth did not appear to be as pertinent in the model as initially expected, accounting only for about 7 % of the total variation compared to 88 % for climate drivers. The relative proportion of model predictor coefficients was used as weighting factors for multicriteria analysis to create a suitability map for the GDV in southern Portugal showing where the vegetation most likely relies on groundwater to cope with aridity. A validation of the resulting map was performed using independent data of the normalized difference water index (NDWI), a satellite-derived vegetation index. June, July and August of 2005 NDWI anomalies, for the years 1999–2009, were calculated to assess the response of active woody species in the region after an extreme drought. The results from the NDWI anomalies provided an overall good agreement with the suitability to host GDV. The model was considered to be reliable for predicting the distribution of the studied vegetation. The methodology developed to map GDVs will allow for the prediction of the evolution of the distribution of GDV according to climate change and aid stakeholder decision-making concerning priority areas of water resource management.


Author(s):  
Hevellyn Talissa dos Santos ◽  
Cesar Augusto Marchioro

Abstract The small tomato borer, Neoleucinodes elegantalis (Guenée, 1854) is a multivoltine pest of tomato and other cultivated solanaceous plants. The knowledge on how N. elegantalis respond to temperature may help in the development of pest management strategies, and in the understanding of the effects of climate change on its voltinism. In this context, this study aimed to select models to describe the temperature-dependent development rate of N. elegantalis and apply the best models to evaluate the impacts of climate change on pest voltinism. Voltinism was estimated with the best fit non-linear model and the degree-day approach using future climate change scenarios representing intermediary and high greenhouse gas emission rates. Two out of the six models assessed showed a good fit to the observed data and accurately estimated the thermal thresholds of N. elegantalis. The degree-day and the non-linear model estimated more generations in the warmer regions and fewer generations in the colder areas, but differences of up to 41% between models were recorded mainly in the warmer regions. In general, both models predicted an increase in the voltinism of N. elegantalis in most of the study area, and this increase was more pronounced in the scenarios with high emission of greenhouse gases. The mathematical model (74.8%) and the location (9.8%) were the factors that mostly contributed to the observed variation in pest voltinism. Our findings highlight the impact of climate change on the voltinism of N. elegantalis and indicate that an increase in its population growth is expected in most regions of the study area.


NeoBiota ◽  
2020 ◽  
Vol 58 ◽  
pp. 129-160
Author(s):  
Anna Schertler ◽  
Wolfgang Rabitsch ◽  
Dietmar Moser ◽  
Johannes Wessely ◽  
Franz Essl

The coypu (Myocastor coypus) is a semi-aquatic rodent native to South America which has become invasive in Europe and other parts of the world. Although recently listed as species of European Union concern in the EU Invasive Alien Species Regulation, an analysis of the current European occurrence and of its potential current and future distribution was missing yet. We collected 24,232 coypu records (corresponding to 25,534 grid cells at 5 × 5 km) between 1980 and 2018 from a range of sources and 28 European countries and analysed them spatiotemporally, categorising them into persistence levels. Using logistic regression, we constructed consensus predictions across all persistence levels to depict the potential current distribution of the coypu in Europe and its change under four different climate scenarios for 2041–2060. From all presence grid cells, 45.5% showed at least early signs of establishment (records temporally covering a minimum of one generation length, i.e. 5 years), whereas 9.8% were considered as containing established populations (i.e. three generation lengths of continuous coverage). The mean temperature of the warmest quarter (bio10), mean diurnal temperature range (bio2) and the minimum temperature of the coldest month (bio6) were the most important of the analysed predictors. In total, 42.9% of the study area are classified as suitable under current climatic conditions, of which 72.6% are to current knowledge yet unoccupied; therefore, we show that the coypu has, by far, not yet reached all potentially suitable regions in Europe. Those cover most of temperate Europe (Atlantic, Continental and Pannonian biogeographic region), as well as the coastal regions of the Mediterranean and the Black Sea. A comparison of the suitable and occupied areas showed that none of the affected countries has reached saturation by now. Under climate change scenarios, suitable areas will slightly shift towards Northern regions, while a general decrease in suitability is predicted for Southern and Central Europe (overall decrease of suitable areas 2–8% depending on the scenario). Nevertheless, most regions that are currently suitable for coypus are likely to be so in the future. We highlight the need to further investigate upper temperature limits in order to properly interpret future climatic suitability for the coypu in Southern Europe. Based on our results, we identify regions that are most at risk for future invasions and provide management recommendations. We hope that this study will help to improve the allocation of efforts for future coypu research and contribute to harmonised management, which is essential to reduce negative impacts of the coypu and to prevent further spread in Europe.


2017 ◽  
Vol 11 (2) ◽  
pp. 63-75
Author(s):  
Nedealcov Maria ◽  
Donica Ala ◽  
Brașoveanu Valeriu ◽  
Grigoraș Nicolae ◽  
Deomidova Cristina

Abstract Assessment activity and surveillance of the forests health, held at the global, regional and local level, has continuously developed, culminating in the current period with interdisciplinary and extensive scientific researches, that evaluate the effects of the main factors on forest ecosystems state, in particular, air pollution and climate change. Scientific researches have shown that among trees ecophysiological processes, forest life processes and meteorological parameters there are direct dependences, particularly in the case of trees supply with water during the growing period (May-July), with major influences for critical months (July and August), which have a decisive impact on growth, vitality and production of organic matter in forests. Dry years, from the beginning of the third millennium can lead to a decrease of mesophilic forests area (beech, sessile oak and penduculate oak), which will tend to retreat towards the center of the area (central Europe) in favor of thermophilic forests with pubescent oak. It was determined that a most significant negative impact of climate aridization will feel the forest ecosystems from Southern and central regions of country (conditioned by the mean air temperature (July-August), monthly rainfall (May-August), evapotranspiration and geographic latitude), and less - the Northern part of the country (Forestry Aridity Index calculated for 3 experimental stations revealed variations of this index between 7.8 - 8.3 - in the Central part of country, and 8.4 - 8.6 - for Southern part of country). At the same time the impact of climate change will determine the spatial and temporal dynamics of pests and pathogenic species. The phenomenon of climate aridization was expressed also through the impact of the Microsphaera alphitoides disease, intensity of “mildew” attack being based on the climatic conditions of the study region. Obtained data, for confirmation, were correlated with indications of bioindicators, present in the study region.


2020 ◽  
Vol 8 ◽  
Author(s):  
Pablo Medrano-Vizcaíno ◽  
Patricia Gutiérrez-Salazar

Nasuella olivacea is an endemic mammal from the Andes of Ecuador and Colombia. Due to its rarity, aspects about its natural history, ecology and distribution patterns are not well known, therefore, research is needed to generate knowledge about this carnivore and a first step is studying suitable habitat areas. We performed Ecological Niche Models and applied future climate change scenarios (2.6 and 8.5 RCP) to determine the potential distribution of this mammal in Colombia and Ecuador, with current and future climate change conditions; furthermore, we analysed its distribution along several land covers. We found that N. olivacea is likely to be found in areas where no records have been reported previously; likewise, climate change conditions would increase suitable distribution areas. Concerning land cover, 73.4% of N. olivacea potential distribution was located outside Protected Areas (PA), 46.1% in Forests and 40.3% in Agricultural Lands. These findings highlight the need to further research understudied species, furthering our understanding about distribution trends and responses to changing climatic conditions, as well as informig future PA designing. These are essential tools for supporting wildlife conservation plans, being applicable for rare species whose biology and ecology remain unknown.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 142
Author(s):  
Quyet Manh Vu ◽  
Tri Dan Nguyen

This study aims to assess the potential development of selected agroforestry options for three provinces in the Northwest of Vietnam. Available spatial data including Land use/land cover maps and forest inventory maps were used as the base maps in combination with supplementary data and field survey to determine the potential agroforestry areas. Soil types, soil depth, soil texture, elevation, slope, temperature and rainfall were used to evaluate the biophysical suitability of ten typical agroforestry options in the study region. For assessing the impact of climate change to agroforestry suitability in the future, temperature and precipitation data extracted from two climate changes scenarios (Representative Concentration Pathway 4.5 and 8.5 in 2046–2065) were used. The results showed that the suitable areas for agroforestry development in Dien Bien, Sơn La and Yen Bai provinces were 267.74.01 ha, 405,597.96 ha; and 297,995.55 ha, respectively. Changes in temperature and precipitation by 2 climate change scenarios affected significantly to the suitability of Docynia indica + livestock grass, Teak + plum + coffee + grass and Plum + maize + livestock grass options. The map of agroforestry suitability can be served as a useful source in developing and expanding the area of agroforestry in the target provinces, and can be applied for other provinces in the same region in Vietnam.


2020 ◽  
Author(s):  
Matti Kummu ◽  
Matias Heino ◽  
Maija Taka ◽  
Olli Varis ◽  
Daniel Viviroli

<p>The majority of global food production, as we know it, is based on agricultural practices developed within stable Holocene climate conditions. Climate change is altering the key conditions for human societies, such as precipitation, temperature and aridity. Their combined impact on altering the conditions in areas where people live and grow food has not yet, however, been systematically quantified on a global scale. Here, we estimate the impacts of two climate change scenarios (RCP 2.6, RCP 8.5) on major population centres and food crop production areas at 5 arc-min scale (~10 km at equator) using Holdridge Life Zones (HLZs), a concept that incorporates all the aforementioned climatic characteristics. We found that if rapid growth of GHG emissions is not halted (RCP 8.5), in year 2070, one fifth of the major food production areas and one fourth of the global population centres would experience climate conditions beyond the ones where food is currently produced, and people are living. Our results thus reinforce the importance of following the RCP 2.6 path, as then only a small fraction of food production (5%) and population centres (6%) would face such unprecedented conditions. Several areas experiencing these unprecedented conditions also have low resilience, such as those within Burkina Faso, Cambodia, Chad, and Guinea-Bissau. In these countries over 75% of food production and population would experience unprecedented climatic conditions under RCP 8.5. These and many other hotspot areas require the most urgent attention to secure sustainable development and equity.</p>


2007 ◽  
Vol 97 (4) ◽  
pp. 369-378 ◽  
Author(s):  
A.E.A. Stephens ◽  
D.J. Kriticos ◽  
A. Leriche

AbstractThe oriental fruit fly,Bactrocera dorsalis(Hendel), is a major pest throughout South East Asia and in a number of Pacific Islands. As a result of their widespread distribution, pest status, invasive ability and potential impact on market access,B. dorsalisand many other fruit fly species are considered major threats to many countries. CLIMEX™ was used to model the potential global distribution ofB. dorsalisunder current and future climate scenarios. Under current climatic conditions, its projected potential distribution includes much of the tropics and subtropics and extends into warm temperate areas such as southern Mediterranean Europe. The model projects optimal climatic conditions forB. dorsalisin the south-eastern USA, where the principle range-limiting factor is likely to be cold stress. As a result of climate change, the potential global range forB. dorsalisis projected to extend further polewards as cold stress boundaries recede. However, the potential range contracts in areas where precipitation is projected to decrease substantially. The significant increases in the potential distribution ofB. dorsalisprojected under the climate change scenarios suggest that the World Trade Organization should allow biosecurity authorities to consider the effects of climate change when undertaking pest risk assessments. One of the most significant areas of uncertainty in climate change concerns the greenhouse gas emissions scenarios. Results are provided that span the range of standard Intergovernmental Panel on Climate Change scenarios. The impact on the projected distribution ofB. dorsalisis striking, but affects the relative abundance of the fly within the total suitable range more than the total area of climatically suitable habitat.


2016 ◽  
Vol 46 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Fabian H. Härtl ◽  
Ivan Barka ◽  
W. Andreas Hahn ◽  
Tomáš Hlásny ◽  
Florian Irauschek ◽  
...  

Forests provide countless ecological, societal, and climatological benefits. With changing climate, maintaining certain services may lead to a decrease in the quantity or quality of other services available from that source. Accordingly, our research objective is to analyze the effects of the provision of a certain ecosystem service on the economically optimized harvest schedules and how harvest schedules will be influenced by climate change. Based on financial portfolio theory, we determined, for two case study regions in Austria and Slovakia, treatment schedules based on nonlinear programming, which integrates climate-sensitive biophysical risks and risk-averting behavior of the management. In both cases, results recommend reducing the overaged stocking volume within several decades to establish new ingrowth, leading to an overall reduction of age and related risk, as well as an increase in growth. Under climate change conditions, the admixing of hardwoods towards spruce–fir–beech (Austria) or spruce–pine–beech (Slovakia) stands should be emphasized to account for the changing risk and growth conditions. Moreover, climate change scenarios either increased (Austria) or decreased (Slovakia) the economic return slightly. In both cases, the costs for providing the ecosystem service “rock fall protection” increases under climate change. Although in the Austrian case there is no clear tendency between the management options, in the Slovakian case, a close-to-nature management option is preferred under climate change conditions. Increasing tree species richness, increasing structural diversity, replacing high-risk stands, and reducing average growing stocks are important preconditions for a successful sustainable management of European mountain forests in the long term.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 874
Author(s):  
Jinyue Song ◽  
Hua Zhang ◽  
Ming Li ◽  
Wuhong Han ◽  
Yuxin Yin ◽  
...  

The red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae), is an invasive pest, and it has spread rapidly all over the world. Predicting the suitable area of S. invicta growth in China will provide a reference that will allow for its invasion to be curbed. In this study, based on the 354 geographical distribution records of S. invicta, combined with 24 environmental factors, the suitable areas of S. invicta growth in China under current (2000s) and future (2030s and 2050s) climate scenarios (SSPs1-2.5s, SSPs2-3.5s and SSPs5-8.5s) were predicted by using the optimized MaxEnt model and geo-detector model. An iterative algorithm and knife-cut test were used to evaluate the important environmental factors that restrict the suitable area under the current climatic conditions. This study also used the response curve to determine the appropriate value of environmental factors to further predict the change and the center of gravity transfer of the suitable area under climate change. The optimized MaxEnt model has high prediction accuracy, and the working curve area (AUC) of the subjects is 0.974. Under climatic conditions, the suitable area is 81.37 × 104 km2 in size and is mainly located in the south and southeast of China. The main environmental factors affecting the suitable area are temperature (Bio1, Bio6, and Bio9), precipitation (Bio12 and Bio14) and NDVI. In future climate change scenarios, the total suitable area will spread to higher latitudes. This distribution will provide an important theoretical basis for relevant departments to rapidly prevent and control the invasion of S. invicta.


Sign in / Sign up

Export Citation Format

Share Document