scholarly journals To which extent are socio-hydrology studies really integrative? The case of natural hazards and disaster research

2021 ◽  
Author(s):  
Franciele Maria Vanelli ◽  
Masato Kobiyama ◽  
Mariana Madruga de Brito

Abstract. Given the recent developments in socio-hydrology and its potential contributions to disaster risk reduction (DRR), we conducted a systematic literature review of socio-hydrological studies aiming to identify persisting gaps and discuss tractable approaches for tackling them. A total of 44 articles that address natural hazards or disasters were reviewed in detail. Our results indicated that: (i) 77.3 % of the studies addressed floods whereas there were very few research applications for droughts (11.4 %) and compound or multi-hazards (11.4 %); (ii) none of the articles investigated interactions across temporal and spatial scales; (iii) quantitative approaches were used more often (65.9 %) in comparison to mixed (22.7 %) and qualitative (11.4 %) approaches; (iv) monodisciplinary studies prevailed (61.4 %) over multi or interdisciplinary (9.1 %) ones, and (v) only 34.1 % of the articles involved stakeholder participation. In summary, we found that there is a fragmentation in the field, with a multitude of social and physical components, methods and data sources being used. Based on these findings, we point out potential ways of tackling the identified challenges to advance socio-hydrology, including studying multiple hazards in a joint framework and exploiting new methods for integrating results from qualitative and quantitative analyses to leverage on the strengths of different fields of knowledge. Addressing these challenges will improve our understanding of human-water interactions to support DRR.

2021 ◽  
Author(s):  
Bruce D. Malamud ◽  
Emmah Mwangi ◽  
Joel Gill ◽  
Ekbal Hussain ◽  
Faith Taylor ◽  
...  

<p>Global policy frameworks, such as the Sendai Framework for Disaster Risk Reduction 2015-2030, increasingly advocate for multi-hazard approaches across different spatial scales. However, management approaches on the ground are still informed by siloed approaches based on one single natural hazard (e.g. flood, earthquake, snowstorm). However, locations are rarely subjected to a single natural hazard but rather prone to more than one. These different hazards and their interactions (e.g. one natural hazard triggering or increasing the probability of one or more natural hazards), together with exposure and vulnerability, shape the disaster landscape of a given region and associated disaster impact.  Here, as part of the UK GCRF funded research grant “Tomorrow’s Cities” we first map out the single natural hazardscape for Nairobi using evidence collected through peer-reviewed literature, grey literature, social media and newspapers. We find the following hazard groups and hazard types present in Nairobi: (i) geophysical (earthquakes, volcanic eruptions, landslides), (ii) hydrological (floods and droughts), (iii) shallow earth processes (regional subsidence, ground collapse, soil subsidence, ground heave), (iv) atmospheric hazards (storm, hail, lightning, extreme heat, extreme cold), (v) biophysical (urban fires), and vi) space hazards (geomatic storms, and impact events). The breadth of single natural hazards that can potentially impact Nairobi is much larger than normally considered by individual hazard managers that work in Nairobi. We then use a global hazard matrix to identify possible hazard interactions, focusing on the following interaction mechanisms: (i) hazard triggering secondary hazard, (ii) hazards amplifying the possibility of the secondary hazard occurring.  We identify 67 possible interactions, as well as some of the interaction cascade typologies that are typical for Nairobi (e.g. a storm triggers and increases the probability of a flood which in turn increases the probability of a flood). Our results indicate a breadth of natural hazards and their interactions in Nairobi, and emphasise a need for a multi-hazard approach to disaster risk reduction.</p>


2020 ◽  
Author(s):  
Aloïs Tilloy ◽  
Bruce Malamud ◽  
Hugo Winter ◽  
Amelie Joly-Laugel

<p>Multi-hazard events have the potential to cause damages to infrastructures and people that may differ greatly from the associated risks posed by singular hazards. Interrelations between natural hazards also operate on different spatial and temporal scales than single natural hazards. Therefore, the measure of spatial and temporal scales of natural hazard interrelations still remain challenging. The objective of this study is to refine and measure temporal and spatial scales of natural hazards and their interrelations by using a spatiotemporal clustering technique. To do so, spatiotemporal information about natural hazards are extracted from the ERA5 climate reanalysis. We focus here on the interrelation between two natural hazards (extreme precipitation and extreme wind gust) during the period 1969-2019 within a region including Great Britain and North-West France. The characteristics of our input data (i.e. important size, high noise level) and the absence of assumption about the shape of our hazard clusters guided the choice of a clustering algorithm toward the DBSCAN clustering algorithm. To create hazard clusters, we retain only extreme values (above the 99% quantile) of precipitation and wind gust. We analyse the characteristics (eg., size, duration, season, intensity) of single and compound events of rain and wind impacting our study area. We then measure the impact of the spatial and temporal scales defined in this study on the nature of the interrelation between extreme rainfall and extreme wind in the UK. We therefore demonstrate how this methodology can be applied to a different set of natural hazards.</p>


2021 ◽  
Author(s):  
Joel Gill ◽  
Ekbal Hussain ◽  
Bruce Malamud ◽  
Robert Šakić Trogrlić

<p>In this paper, we discuss the dynamic nature of risk through the lens of multi-hazard relationships and scenarios. Disaster risk is commonly expressed as (Risk = Hazard × Exposure × Vulnerability). This expression does not communicate the extent to which each term (and therefore risk and impact) can change over time, and any relationships between the four variables. To better convey and discuss multi-hazards and dynamic risk, in July and August 2020 we held two virtual workshops (40 and 35 participants) as part of the GCRF Tomorrow’s Cities Research Hub, which has as its focus four cities Istanbul, Kathmandu, Nairobi, and Quito, with a particular emphasis on the urban poor. During the two workshops, participants (including those from academia, NGOs, and the public sector) from each city generated multi-hazard scenarios that can be used to improve the understanding of dynamic risk and we highlighted three main examples of dynamic risk: (1) The hazard term can involve multiple hazards, with relationships between hazards, and the likelihood or magnitude of single natural hazards and multi-hazard scenarios varying over time. (2) Both the exposure and vulnerability components of the risk equation change over time, and can contribute to the triggering, amplification (or reduction) of multi-hazard events. (3) Progression through multi-hazard scenarios can influence or drive changes in both exposure and/or vulnerability terms.<strong> </strong>These three statements illustrate the dynamic nature of each component of the risk equation and the existence of relationships between each term. Furthermore, they demonstrate how understanding the multi-hazard landscape and potential multi-hazard scenarios can help to enrich understanding of dynamic risk. This understanding of multi-hazard scenarios can be used to consider potential interventions where risk is dynamic.</p>


2021 ◽  
Vol 11 (7) ◽  
pp. 3285
Author(s):  
Ze Pan ◽  
Zheng Tan ◽  
Qunbo Lv

The multi-frame super-resolution techniques have been prosperous over the past two decades. However, little attention has been paid to the combination of deep learning and multi-frame super-resolution. One reason is that most deep learning-based super-resolution methods cannot handle variant numbers of input frames. Another reason is that it is hard to capture accurate temporal and spatial information because of the misalignment of input images. To solve these problems, we propose an optical-flow-based multi-frame super-resolution framework, which is capable of dealing with various numbers of input frames. This framework enables to make full use of the input frames, allowing it to obtain better performance. In addition, we use a spatial subpixel alignment module for more accurate subpixel-wise spatial alignment and introduce a dual weighting module to generate weights for temporal fusion. Both two modules lead to more effective and accurate temporal fusion. We compare our method with other state-of-the-art methods and conduct ablation studies on our method. The results of qualitative and quantitative analyses show that our method achieves state-of-the-art performances, demonstrating the advantage of the designed framework and the necessity of proposed modules.


Author(s):  
Jerrold L. Abraham

Inorganic particulate material of diverse types is present in the ambient and occupational environment, and exposure to such materials is a well recognized cause of some lung disease. To investigate the interaction of inhaled inorganic particulates with the lung it is necessary to obtain quantitative information on the particulate burden of lung tissue in a wide variety of situations. The vast majority of diagnostic and experimental tissue samples (biopsies and autopsies) are fixed with formaldehyde solutions, dehydrated with organic solvents and embedded in paraffin wax. Over the past 16 years, I have attempted to obtain maximal analytical use of such tissue with minimal preparative steps. Unique diagnostic and research data result from both qualitative and quantitative analyses of sections. Most of the data has been related to inhaled inorganic particulates in lungs, but the basic methods are applicable to any tissues. The preparations are primarily designed for SEM use, but they are stable for storage and transport to other laboratories and several other instruments (e.g., for SIMS techniques).


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
T Jankovic ◽  
G Zdunic ◽  
K Savikin ◽  
I Beara ◽  
N Mimica-Dukić

2019 ◽  
Vol 26 (8) ◽  
pp. 1311-1327 ◽  
Author(s):  
Pala Rajasekharreddy ◽  
Chao Huang ◽  
Siddhardha Busi ◽  
Jobina Rajkumari ◽  
Ming-Hong Tai ◽  
...  

With the emergence of nanotechnology, new methods have been developed for engineering various nanoparticles for biomedical applications. Nanotheranostics is a burgeoning research field with tremendous prospects for the improvement of diagnosis and treatment of various cancers. However, the development of biocompatible and efficient drug/gene delivery theranostic systems still remains a challenge. Green synthetic approach of nanoparticles with low capital and operating expenses, reduced environmental pollution and better biocompatibility and stability is a latest and novel field, which is advantageous over chemical or physical nanoparticle synthesis methods. In this article, we summarize the recent research progresses related to green synthesized nanoparticles for cancer theranostic applications, and we also conclude with a look at the current challenges and insight into the future directions based on recent developments in these areas.


Larvae of many marine invertebrates must capture and ingest particulate food in order to develop to metamorphosis. These larvae use only a few physical processes to capture particles, but implement these processes using diverse morphologies and behaviors. Detailed understanding of larval feeding mechanism permits investigators to make predictions about feeding performance, including the size spectrum of particles larvae can capture and the rates at which they can capture them. In nature, larvae are immersed in complex mixtures of edible particles of varying size, density, flavor, and nutritional quality, as well as many particles that are too large to ingest. Concentrations of all of these components vary on fine temporal and spatial scales. Mechanistic models linking larval feeding mechanism to performance can be combined with data on food availability in nature and integrated into broader bioenergetics models to yield increased understanding of the biology of larvae in complex natural habitats.


Sign in / Sign up

Export Citation Format

Share Document