scholarly journals Precipitation pattern in the Western Himalayas revealed by four datasets

2018 ◽  
Vol 22 (10) ◽  
pp. 5097-5110 ◽  
Author(s):  
Hong Li ◽  
Jan Erik Haugen ◽  
Chong-Yu Xu

Abstract. Data scarcity is the biggest problem for scientific research related to hydrology and climate studies in the Great Himalayas region. High-quality precipitation data are difficult to obtain due to a sparse network, cold climate and high heterogeneity in topography. In this paper, we examine four datasets in northern India of the Western Himalayas: interpolated gridded data based on gauge observations (IMD, 1∘×1∘, and APHRODITE, 0.25∘×0.25∘), reanalysis data (ERA-Interim, 0.75∘×0.75∘) and high-resolution simulation by a regional climate model (WRF, 0.15∘×0.15∘). The four datasets show a similar spatial pattern and temporal variation during the period 1981–2007, though the absolute values vary significantly (497–819 mm year−1). The differences are particularly large in July and August at the windward slopes and high-elevation areas. Overall, the datasets show that the summer is getting wetter and the winter is getting drier, though most of the trends in monthly precipitation are not significant. Trend analysis of summer and winter precipitation at every grids confirms the changes. Wetter summers will result in more and bigger floods in the downstream areas. Warmer and drier winters will result in less glacier accumulation. All the datasets show consistency in the period 1981–2007 and can give a spatial overview of the precipitation in the region. Comparing with the Bhuntar gauge data, the WRF dataset gives the best estimates of extreme precipitation. To conclude, we recommend the APHRODITE dataset and the WRF dataset for hydrological studies for their improved spatial variation which match the scale of hydrological processes as well as accuracy in extreme precipitation for flood simulation.

2017 ◽  
Author(s):  
Hong Li ◽  
Jan Erik Haugen ◽  
Chongyu Xu

Abstract. Data scarcity is the biggest problem for scientific research related to hydrology and climate studies in the great Himalayas Region. High quality precipitation data are among the most difficult to obtain due to sparse network, cold climate and high heterogeneity in topography. This paper examines four different types of datasets, including interpolated gridded data based on ground observations (IMD, 1° × 1° and APHRODITE, 0.25° × 0.25°), reanalysis data (ERA-interim, 0.75° × 0.75°) and high resolution simulation by a regional climate model (WRF, 0.15° × 0.15°). In Northern India of the Western Himalayas, the four datasets show a similar spatial pattern and temporal variation during the period 1981–2007, though the absolute values vary significantly (497–819 mm/year) mainly due to the data source and the methods of data generation. The differences are particularly large in July and August at the windward slopes and the high elevation area. All the datasets show a wetter summer and drier winter during the period, though most of the trends in monthly precipitation are not significant. The comparison between two periods of 1981–1985 and 2003–2007 shows an increase in summer and a decrease in winter with large variations. Between the periods, the runoff is expected to increase which is likely to result in more and bigger floods in the downstream areas according to the IMD, APHRODITE and WRF datasets, whereas the ERA-interim dataset reveals a tendency toward longer low flow periods and more droughts. All the datasets can give a good overview of the precipitation, but because of coarse spatial resolution and small size of basins in this area, future work such as local correction is necessary for hydro-glacial modelling.


2006 ◽  
Vol 54 (6-7) ◽  
pp. 9-15 ◽  
Author(s):  
M. Grum ◽  
A.T. Jørgensen ◽  
R.M. Johansen ◽  
J.J. Linde

That we are in a period of extraordinary rates of climate change is today evident. These climate changes are likely to impact local weather conditions with direct impacts on precipitation patterns and urban drainage. In recent years several studies have focused on revealing the nature, extent and consequences of climate change on urban drainage and urban runoff pollution issues. This study uses predictions from a regional climate model to look at the effects of climate change on extreme precipitation events. Results are presented in terms of point rainfall extremes. The analysis involves three steps: Firstly, hourly rainfall intensities from 16 point rain gauges are averaged to create a rain gauge equivalent intensity for a 25 × 25 km square corresponding to one grid cell in the climate model. Secondly, the differences between present and future in the climate model is used to project the hourly extreme statistics of the rain gauge surface into the future. Thirdly, the future extremes of the square surface area are downscaled to give point rainfall extremes of the future. The results and conclusions rely heavily on the regional model's suitability in describing extremes at time-scales relevant to urban drainage. However, in spite of these uncertainties, and others raised in the discussion, the tendency is clear: extreme precipitation events effecting urban drainage and causing flooding will become more frequent as a result of climate change.


2021 ◽  
Author(s):  
Simon C. Scherrer ◽  
Christoph Spirig ◽  
Martin Hirschi ◽  
Felix Maurer ◽  
Sven Kotlarski

<p>The Alpine region has recently experienced several dry summers with negative impacts on the economy, society and ecology. Here, soil water, evapotranspiration and meteorological data from several observational and model-based data sources is used to assess events, trends and drivers of summer drought in Switzerland in the period 1981‒2020. 2003 and 2018 are identified as the driest summers followed by somewhat weaker drought conditions in 2020, 2015 and 2011. We find clear evidence for an increasing summer drying in Switzerland. The observed climatic water balance (-39.2 mm/decade) and 0-1 m soil water from reanalysis (ERA5-Land: -4.7 mm/decade; ERA5: -7.2 mm/decade) show a clear tendency towards summer drying with decreasing trends in most months. Increasing evapotranspiration (potential evapotranspiration: +21.0 mm/decade; ERA5-Land actual evapotranspiration: +15.1 mm/decade) is identified as important driver which scales excellently (+4 to +7%/K) with the observed strong warming of about 2°C. An insignificant decrease in precipitation further enhanced the tendency towards drier conditions. Most simulations of the EURO-CORDEX regional climate model ensemble underestimate the changes in summer drying. They underestimate both, the observed recent summer warming and the small decrease in precipitation. The changes in temperature and precipitation are negatively correlated, i.e. simulations with stronger warming tend to show (weak) decreases in precipitation. However, most simulations and the reanalysis overestimate the correlation between temperature and precipitation and the precipitation-temperature scaling on the interannual time scale. Our results emphasize that the analysis of the regional summer drought evolution and its drivers remains challenging especially with regional climate model data but considerable uncertainties also exist in reanalysis data sets.</p>


2007 ◽  
Vol 135 (5) ◽  
pp. 2006-2015 ◽  
Author(s):  
Tomonori Sato ◽  
Fujio Kimura

Abstract The roles of the Tibetan Plateau (TP) upon the transition of precipitation in the south Asian summer monsoon are investigated using a simplified regional climate model. Before the onset of the south Asian monsoon, descending flow in the midtroposphere, which can be considered as a suppressor against precipitation, prevails over northern India as revealed by the NCEP–NCAR reanalysis data. The descending motion gradually weakens and retreats from this region before July, consistent with the northwestward migration of the monsoon rainfall. To examine a hypothesis that the dynamical and thermal effects of TP cause the midtropospheric subsidence and its seasonal variation, a series of numerical experiments are conducted using a simplified regional climate model. The mechanical effect of the TP generates robust descending flow over northern India during winter and spring when the zonal westerly flow is relatively strong, but the effect becomes weaker after April as the westerly flow tends to be weaker. The thermal effect of the TP, contrastingly, enhances the descending flow over north India in the premonsoonal season. The descending flow enhanced by the thermal effect of the TP has a seasonal cycle because the global-scale upper-level westerly changes the energy propagation of the thermal forcing response. The subsidence formed by the mechanical and thermal effects of the TP disappears over northern India after the subtropical westerly shifts north of the plateau, the seasonal change of which is in good agreement with that in the reanalysis data. The retreat of the descending flow can be regarded as the withdrawal of the premonsoon season and the commencement of the south Asian monsoon. After that, the deep convection, indicating the onset of the Indian summer monsoon, is able to develop over north India in relation to the ocean–atmosphere and land–atmosphere interaction processes. Northwest India is known to be the latest region of summer monsoon onset in south Asia. Thus, the thermal and mechanical forcing of the TP has great impact on the transition of the Indian monsoon rainfall by changing the midtropospheric circulation.


2021 ◽  
pp. 1-56

This paper describes the downscaling of an ensemble of twelve GCMs using the WRF model at 12-km grid spacing over the period 1970-2099, examining the mesoscale impacts of global warming as well as the uncertainties in its mesoscale expression. The RCP 8.5 emissions scenario was used to drive both global and regional climate models. The regional climate modeling system reduced bias and improved realism for a historical period, in contrast to substantial errors for the GCM simulations driven by lack of resolution. The regional climate ensemble indicated several mesoscale responses to global warming that were not apparent in the global model simulations, such as enhanced continental interior warming during both winter and summer as well as increasing winter precipitation trends over the windward slopes of regional terrain, with declining trends to the lee of major barriers. During summer there is general drying, except to the east of the Cascades. April 1 snowpack declines are large over the lower to middle slopes of regional terrain, with small snowpack increases over the lower elevations of the interior. Snow-albedo feedbacks are very different between GCM and RCM projections, with the GCM’s producing large, unphysical areas of snowpack loss and enhanced warming. Daily average winds change little under global warming, but maximum easterly winds decline modestly, driven by a preferential sea level pressure decline over the continental interior. Although temperatures warm continuously over the domain after approximately 2010, with slight acceleration over time, occurrences of temperature extremes increase rapidly during the second half of the 21st century.


2006 ◽  
Vol 19 (4) ◽  
pp. 630-637 ◽  
Author(s):  
Rasmus E. Benestad

Abstract The Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report states that instrumental records show an increase in precipitation by +0.5%–1% decade−1 in much of the Northern Hemisphere mid- and high latitudes and a decrease of −0.3% decade−1 over subtropical land areas. It has been postulated that these trends are associated with the enhanced levels of atmospheric CO2. In this context, it is natural to ask how continuing rising levels of CO2 may affect the climate in the future. The past IPCC reports have documented numerous studies where increased greenhouse gas concentrations have been prescribed in global climate model simulations. Now, new simulations with state-of-the-art climate models are becoming available for the next IPCC report [the Fourth Assessment Report (AR4)], and results from a number of these simulations are examined in order to determine whether they indicate a change in extreme precipitation on a monthly basis. The analysis involves a simple record–statistics framework and shows that the upper tails of the probability distribution functions for monthly precipitation are being stretched in the mid- and high latitudes where mean-level precipitation increases have already been reported in the past. In other words, values corresponding to extreme monthly precipitation in the past are, according to these results, becoming more frequent.


2013 ◽  
Vol 6 (2) ◽  
pp. 779-809 ◽  
Author(s):  
B. Geyer

Abstract. The coastDat data sets were produced to give a consistent and homogeneous database mainly for assessing weather statistics and long-term changes for Europe, especially in data sparse regions. A sequence of numerical models was employed to reconstruct all aspects of marine climate (such as storms, waves, surges etc.) over many decades. Here, we describe the atmospheric part of coastDat2 (Geyer and Rockel, 2013, doi:10.1594/WDCC/coastDat-2_COSMO-CLM). It consists of a regional climate reconstruction for entire Europe, including Baltic and North Sea and parts of the Atlantic. The simulation was done for 1948 to 2012 with a regional climate model and a horizontal grid size of 0.22° in rotated coordinates. Global reanalysis data were used as forcing and spectral nudging was applied. To meet the demands on the coastDat data set about 70 variables are stored hourly.


2007 ◽  
Vol 20 (2) ◽  
pp. 218-232 ◽  
Author(s):  
Jinhong Zhu ◽  
Xin-Zhong Liang

Abstract The fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5)-based regional climate model (CMM5) capability in simulating the interannual variations of U.S. precipitation and surface air temperature during 1982–2002 is evaluated with a continuous baseline integration driven by the NCEP–Department of Energy (DOE) Second Atmospheric Model Intercomparison Project Reanalysis (R-2). It is demonstrated that the CMM5 has a pronounced downscaling skill for precipitation and temperature interannual variations. The EOF and correlation analyses illustrate that, for both quantities, the CMM5 captures the spatial pattern, temporal evolution, and circulation teleconnections much better than the R-2. In particular, the CMM5 more realistically simulates the precipitation pattern centered in the Northwest, where the representation of the orographic enhancement by the forced uplifting during winter (rainy season) is greatly improved over the R-2. The downscaling skill, however, is sensitive to the cumulus parameterization. This sensitivity is studied by comparing the baseline with a branch summer integration replacing the Grell with the Kain–Fritsch cumulus scheme in the CMM5. The dominant EOF mode of the U.S. summer precipitation interannual variation, identified with the out-of-phase relationship between the Midwest and Southeast in observations, is reproduced more accurately by the Grell than the Kain–Fritsch scheme, which largely underestimates the variation in the Midwest. This pattern is associated with east–west movement of the Great Plains low-level jet (LLJ): a more western position corresponds to a stronger southerly flow bringing more moisture and heavier rainfall in the Midwest and less in the Southeast. The second EOF pattern, which describes the consistent variation over the southern part of the Midwest and the South in observations, is captured better by the Kain–Fritsch scheme than the Grell, whose pattern systematically shifts southward.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 587 ◽  
Author(s):  
Evdokia Tapoglou ◽  
Anthi Vozinaki ◽  
Ioannis Tsanis

Frequency analysis on extreme hydrological and meteorological events under the effect of climate change is performed in the island of Crete. Data from Regional Climate Model simulations (RCMs) that follow three Representative Concentration Pathways (RCP2.6, RCP4.5, RCP8.5) are used in the analysis. The analysis was performed for the 1985–2100 time period, divided into three equal-duration time slices (1985–2010, 2025–2050, and 2075–2100). Comparison between the results from the three time slices for the different RCMs under different RCP scenarios indicate that drought events are expected to increase in the future. The meteorological and hydrological drought indices, relative Standardized Precipitation Index (SPI) and Standardized Runoff index (SRI), are used to identify the number of drought events for each RCM. Results from extreme precipitation, extreme flow, meteorological and hydrological drought frequency analysis over Crete show that the impact of climate change on the magnitude of 100 years return period extreme events will also increase, along with the magnitude of extreme precipitation and flow events.


Sign in / Sign up

Export Citation Format

Share Document