scholarly journals Given the problem of projection, are heat maps an oxymoron?

2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Daniel Strebe

<p><strong>Abstract.</strong> With the proliferation of data analysis and visualization tools, we see more and more heat maps. But should we? Are such displays meaningful? At large scales, heat maps need not be controversial (though common tools can blight even simple cases). But what about small-scale maps? Is anyone thinking about the effects of projection on heat maps? How do map projections change the semantics of heat maps? What projections permit meaningful heat maps? How should heat maps be calculated in the presence of a map projection? We explore these problems and questions in this presentation to offer critique and advice.</p><p>For the purposes of this discussion, a heat map is a representation of the density or magnitude of a spatial phenomenon on two dimensions, treating the density or magnitude as a continuous measure whether or not the underlying phenomenon is continuous. If the data are too sparse in the presentation space, then the fiction of continuity ought to be avoided; a heat map would not be an appropriate visualization. While real world examples of heat maps that violate this principle are easy to find, we take the principle for granted and do not elaborate further here.</p><p>Unfortunately, there are several other ways to construct ineffective heat maps. One of the primary offenses is to ignore the effect of map projection on the presentation of density. It should be clear that a projection whose area measure varies widely across the presentation space necessarily distorts density. If the heat map is a presentation of density &amp;ndash; which most are &amp;ndash; then poor choice of projection would contradict the purpose of a heat map. The result would be a blatant fiction. Surprisingly, the Mercator projection often can be found in small scale heat maps, for the reason that the projection is common, is the default in many sets of tooling, and is sometimes the only projection available with the set of map construction tools. And yet, as far as density variation goes, a worse case than Mercator cannot be found among common projections.</p><p>Even if density remains constant across the map, a poor heat map could be generated if the analysis for the heat map mixes phenomenon space, which is geographic, with projected space, which is not. Common tools commit this fallacy. The result is that a phenomenon whose density diminishes radially (for example) from a hot point might show as concentric circles of decreasing intensity on the projected map, whereas we would expect elongations of the heat field in accordance with the projection’s distortion metric.</p><p>We conclude that, while it is possible to construct responsible heat maps of geographic data, there are several pitfalls. Among these pitfalls, we find that common tools conspire to assist in the presentation of fiction instead of fact.</p>

2018 ◽  
pp. 6-30 ◽  
Author(s):  
Fritz Kessler

As developments in the field of map projections occur (e.g., the deriving of a new map projection), it would be reasonable to expect that those developments that are important from a teaching standpoint would be included in cartography textbooks. However, researchers have not examined whether map projection material presented in cartography textbooks is keeping pace with developments in the field and whether that material is important for cartography students to learn. To provide such an assessment, I present the results of a content analysis of projection material discussed in 24 cartography textbooks published during the twentieth and early twenty-first centuries. Results suggest that some material, such as projection properties, was discussed in all textbooks across the study period. Other material, such as methods used to illustrate distortion patterns, and the importance of datums, was either inconsistently presented or rarely mentioned. Comparing recent developments in projections to the results of the content analysis, I offer three recommendations that future cartography textbooks should follow when considering what projection material is important. First, textbooks should discuss the importance that defining a coordinate system has in the digital environment. Second, textbooks should summarize the results from experimental studies that provide insights into how map readers understand projections and how to choose appropriate map projections. Third, textbooks should review the impacts of technology on projections, such as the web Mercator projection, programming languages, and the challenges of projecting raster data. 


2019 ◽  
Vol 8 (3) ◽  
pp. 125 ◽  
Author(s):  
Lieselot Lapon ◽  
Philippe De Maeyer ◽  
Nina Vanhaeren ◽  
Sarah Battersby ◽  
Kristien Ooms

For decades, cartographers and cognitive scientists have speculated about the influence of map projections on mental representations of the world. The development of Web 2.0 and web mapping services at the beginning of the 21st century—such as Google Maps, OpenStreetMap, and Baidu Map—led to an enormous spread of cartographic data, which is available to every Internet user. Nevertheless, the cartographic properties of these map services, and, in particular, the selected map projection or the Web Mercator projection, are questionable. The goal of this study is to investigate if the global-scale mental map of young people has been influenced by the increasing availability of web maps and the Web Mercator projection. An application was developed that allowed participants of Belgium and the US to scale the land area of certain countries and continents compared to Europe or the conterminous United States. The results show that the participants’ estimation of the actual land area is quite accurate. Moreover, an indication of the existence of a Mercator effect could not be discovered. To conclude, the young people’s mental map of the world does not appear to be influenced by a specific map projection but by personal characteristics. These elements are varied and require further analysis.


2012 ◽  
pp. 53-67 ◽  
Author(s):  
Michael P Finn ◽  
Daniel R Steinwand ◽  
Jason R Trent ◽  
Robert A Buehler ◽  
David M Mattli ◽  
...  

Scientists routinely accomplish small-scale geospatial modeling using raster datasets of global extent. Such use often requires the projection of global raster datasets onto a map or the reprojection from a given map projection associated with a dataset. The distortion characteristics of these projection transformations can have significant effects on modeling results. Distortions associated with the reprojection of global data are generally greater than distortions associated with reprojections of larger-scale, localized areas. The accuracy of areas in projected raster datasets of global extent is dependent on resolution. To address these problems of projection and the associated resampling that accompanies it, methods for framing the transformation space, direct point-to-point transformations rather than gridded transformation spaces, a solution to the wrap-around problem, and an approach to alternative resampling methods are presented. The implementations of these methods are provided in an open source software package called MapImage (or mapIMG, for short), which is designed to function on a variety of computer architectures.


2015 ◽  
Vol 3 (1) ◽  
pp. 31 ◽  
Author(s):  
Rohani Mohd ◽  
Badrul Hisham Kamaruddin ◽  
Khulida Kirana Yahya ◽  
Elias Sanidas

The purpose of the present study is twofold: first, to investigate the true values of Muslim owner managers; second, to examine the impact of these values on entrepreneurial orientations of Muslim small-scale entrepreneurs. 850 Muslim owner managers were selected randomly using the sampling frame provided by MajlisAmanah Rakyat Malaysia (MARA). 162 completed questionnaires were collected and analyzed. For this paper only two dimensions of entrepreneurial orientations were analyzed: proactive orientation and innovative orientation. Interestingly, the findings revealed that Muslim businessmen/women are honest, loyal, disciplined and hard working. Loyalty and honesty are positively related to proactive orientation, while discipline and hard-work are positively related to innovative orientation. The findings provide implications for existing relevant theories, policy makers, practitioners and learning institutions. 


F1000Research ◽  
2020 ◽  
Vol 8 ◽  
pp. 1750 ◽  
Author(s):  
Michael C. Ryan ◽  
Mark Stucky ◽  
Chris Wakefield ◽  
James M. Melott ◽  
Rehan Akbani ◽  
...  

Clustered heat maps are the most frequently used graphics for visualization and interpretation of genome-scale molecular profiling data in biology.  Construction of a heat map generally requires the assistance of a biostatistician or bioinformatics analyst capable of working in R or a similar programming language to transform the study data, perform hierarchical clustering, and generate the heat map.  Our web-based Interactive Heat Map Builder can be used by investigators with no bioinformatics experience to generate high-caliber, publication quality maps.  Preparation of the data and construction of a heat map is rarely a simple linear process.  Our tool allows a user to move back and forth iteratively through the various stages of map generation to try different options and approaches.  Finally, the heat map the builder creates is available in several forms, including an interactive Next-Generation Clustered Heat Map that can be explored dynamically to investigate the results more fully.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4905
Author(s):  
Hongbo Li ◽  
Dapeng Jiang ◽  
Jun Cao ◽  
Dongyan Zhang

Lipid content is an important indicator of the edible and breeding value of Pinus koraiensis seeds. Difference in origin will affect the lipid content of the inner kernel, and neither can be judged by appearance or morphology. Traditional chemical methods are small-scale, time-consuming, labor-intensive, costly, and laboratory-dependent. In this study, near-infrared (NIR) spectroscopy combined with chemometrics was used to identify the origin and lipid content of P. koraiensis seeds. Principal component analysis (PCA), wavelet transformation (WT), Monte Carlo (MC), and uninformative variable elimination (UVE) methods were used to process spectral data and the prediction models were established with partial least-squares (PLS). Models were evaluated by R2 for calibration and prediction sets, root mean standard error of cross-validation (RMSECV), and root mean square error of prediction (RMSEP). Two dimensions of input data produced a faster and more accurate PLS model. The accuracy of the calibration and prediction sets was 98.75% and 97.50%, respectively. When the Donoho Thresholding wavelet filter ‘bior4.4’ was selected, the WT–MC–UVE–PLS regression model had the best predictions. The R2 for the calibration and prediction sets was 0.9485 and 0.9369, and the RMSECV and RMSEP were 0.0098 and 0.0390, respectively. NIR technology combined with chemometric algorithms can be used to characterize P. koraiensis seeds.


Fluids ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 20 ◽  
Author(s):  
Christina Hamlet ◽  
Wanda Strychalski ◽  
Laura Miller

Nematocysts are stinging organelles used by members of the phylum Cnidaria (e.g., jellyfish, anemones, hydrozoans) for a variety of important functions including capturing prey and defense. Nematocysts are the fastest-known accelerating structures in the animal world. The small scale (microns) coupled with rapid acceleration (in excess of 5 million g) present significant challenges in imaging that prevent detailed descriptions of their kinematics. The immersed boundary method was used to numerically simulate the dynamics of a barb-like structure accelerating a short distance across Reynolds numbers ranging from 0.9–900 towards a passive elastic target in two dimensions. Results indicate that acceleration followed by coasting at lower Reynolds numbers is not sufficient for a nematocyst to reach its target. The nematocyst’s barb-like projectile requires high accelerations in order to transition to the inertial regime and overcome the viscous damping effects normally encountered at small cellular scales. The longer the barb is in the inertial regime, the higher the final velocity of the projectile when it touches its target. We find the size of the target prey does not dramatically affect the barb’s approach for large enough values of the Reynolds number, however longer barbs are able to accelerate a larger amount of surrounding fluid, which in turn allows the barb to remain in the inertial regime for a longer period of time. Since the final velocity is proportional to the force available for piercing the membrane of the prey, high accelerations that allow the system to persist in the inertial regime have implications for the nematocyst’s ability to puncture surfaces such as cellular membranes or even crustacean cuticle.


2019 ◽  
Vol 84 (6) ◽  
pp. 1203-1219
Author(s):  
Anthony Radjen ◽  
Gabriele Gradoni ◽  
Richard Tew

Abstract Reflection and transmission phenomena associated with high-frequency linear wave incidence on irregular boundaries between adjacent acoustic or electromagnetic media, or upon the irregular free surface of a semi-infinite elastic solid, are studied in two dimensions. Here, an ‘irregular’ boundary is one for which small-scale undulations of an arbitrary profile are superimposed upon an underlying, smooth curve (which also has an arbitrary profile), with the length scale of the perturbation being prescribed in terms of a certain inverse power of the large wave-number of the incoming wave field. Whether or not the incident field has planar or cylindrical wave-fronts, the associated phase in both cases is linear in the wave-number, but the presence of the boundary irregularity implies the necessity of extra terms, involving fractional powers of the wave-number in the phase of the reflected and transmitted fields. It turns out that there is a unique perturbation scaling for which precisely one extra term in the phase is needed and hence for which a description in terms of a Friedlander–Keller ray expansion in the form as originally presented is appropriate, and these define a ‘distinguished’ class of perturbed boundaries and are the subject of the current paper.


Geophysics ◽  
1991 ◽  
Vol 56 (12) ◽  
pp. 2102-2106 ◽  
Author(s):  
Catherine deGroot‐Hedlin

A common problem in magnetotelluric (MT) sounding is the presence of static shifts in the data, i.e., a vertical shifting of the log‐apparent‐resistivity versus period curves relative to regional values (Jones, 1988; Jiracek, 1990; Berdichevsky et al., 1989). These static shifts are due to the presence of small‐scale, shallow conductivity anomalies near the measurement site. Electric charge builds up on near‐surface anomalies that are small in comparison to the skin depth of the electromagnetic (EM) fields. The charge buildup produces a perturbation of the measured electric fields from their regional values that persists to arbitrarily low frequencies. Incorrect removal of these local distortions leads to incorrect interpretation of the deeper targets of investigation.


1980 ◽  
Vol 99 (3) ◽  
pp. 481-493
Author(s):  
Ralph Baierlein

The subject is the small-scale structure of a magnetic field in a turbulent conducting fluid, ‘small scale’ meaning lengths much smaller than the characteristic dissipative length of the turbulence. Philip Saffman developed an approximation to describe this structure and its evolution in time. Its usefulness invites a closer examination of the approximation itself and an attempt to place sharper limits on the numerical parameters that appear in the approximate correlation functions, topics to which the present paper is addressed.A Lagrangian approach is taken, wherein one makes a Fourier decomposition of the magnetic field in a neighbourhood that follows a fluid element. If one construes the viscous-convective range narrowly, by ignoring magnetic dissipation entirely, then results for a magnetic field in two dimensions are consistent with Saffman's approximation, but in three dimensions no steady state could be found. Thus, in three dimensions, turbulent amplification seems to be more effective than Saffman's approximation implies. The cause seems to be a matter of geometry, not of correlation times or relative time scales.Strictly-outward spectral transfer is a characteristic of Saffman's approximation, and this may be an accurate description only when dissipation suppresses the contributions from inwardly directed spectral transfer. In the spectral region where dominance passes from convection to dissipation, one can generate expressions for the parameters that arise in Saffman's approximation. Their numerical evaluation by computer simulation may enable one to sharpen the limits that Saffman had already set for those parameters.


Sign in / Sign up

Export Citation Format

Share Document