scholarly journals Variations of the snow physical parameters and their effects on albedo in Sapporo, Japan

2007 ◽  
Vol 46 ◽  
pp. 375-381 ◽  
Author(s):  
Teruo Aoki ◽  
Hiroki Motoyoshi ◽  
Yuji Kodama ◽  
Teppei J. Yasunari ◽  
Konosuke Sugiura

AbstractContinuous measurements of the radiation budget and meteorological components, along with frequent snow-pit work, were performed in Sapporo, Hokkaido, Japan, during two winters from 2003 to 2005. The measured relationships between broadband albedos and the mass concentration of snow impurities were compared with theoretically predicted relationships calculated using a radiative transfer model for the atmosphere–snow system in which different types (in light absorption) of impurity models based on mineral dust and soot were assumed. The result suggests that the snow in Sapporo was contaminated not only with mineral dust but also with more absorptive soot. A comparison of the measured relationships between broadband albedos and snow grain size for two different layers with the theoretically predicted relationships revealed that the visible albedo contains information about the snow grain size in deeper snow layers (10 cm), and the near-infrared albedo contains only surface information. This is due to the difference in penetration depth of solar radiation into snow between the visible and the near-infrared wavelengths.

2008 ◽  
Vol 4 (S252) ◽  
pp. 263-264
Author(s):  
Huan Wang ◽  
B. W. Jiang ◽  
R. Szczerba

AbstractWith the Mie theory and the radiative transfer model, we studied the effect of dust size on the infrared color indexes concerning special filters used in the space infrared missions and typical filters in the near-infrared, of AGB stars with typical oxygen-rich and carbon-rich dust shells. It is found the most affected bands are the near-infrared bands JHK and the Spitzer IRAC bands, meanwhile the wavebands with reference wavelength longer than 10 μm is little affected. The effect increases fast with the mass loss rate. We also discussed the potential to distinguish the O-rich and C-rich dusts, and the difference in IR colors between the AGB stars and other IR sources like YSOs and galaxies.


2005 ◽  
Vol 5 (10) ◽  
pp. 2847-2867 ◽  
Author(s):  
N. Hatzianastassiou ◽  
C. Matsoukas ◽  
A. Fotiadi ◽  
K. G. Pavlakis ◽  
E. Drakakis ◽  
...  

Abstract. The monthly mean shortwave (SW) radiation budget at the Earth's surface (SRB) was computed on 2.5-degree longitude-latitude resolution for the 17-year period from 1984 to 2000, using a radiative transfer model accounting for the key physical parameters that determine the surface SRB, and long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2). The model input data were supplemented by data from the National Centers for Environmental Prediction - National Center for Atmospheric Research (NCEP-NCAR) and European Center for Medium Range Weather Forecasts (ECMWF) Global Reanalysis projects, and other global data bases such as TIROS Operational Vertical Sounder (TOVS) and Global Aerosol Data Set (GADS). The model surface radiative fluxes were validated against surface measurements from 22 stations of the Baseline Surface Radiation Network (BSRN) covering the years 1992-2000, and from 700 stations of the Global Energy Balance Archive (GEBA), covering the period 1984-2000. The model is in good agreement with BSRN and GEBA, with a negative bias of 14 and 6.5 Wm-2, respectively. The model is able to reproduce interesting features of the seasonal and geographical variation of the surface SW fluxes at global scale. Based on the 17-year average model results, the global mean SW downward surface radiation (DSR) is equal to 171.6 Wm-2, whereas the net downward (or absorbed) surface SW radiation is equal to 149.4 Wm-2, values that correspond to 50.2 and 43.7% of the incoming SW radiation at the top of the Earth's atmosphere. These values involve a long-term surface albedo equal to 12.9%. Significant increasing trends in DSR and net DSR fluxes were found, equal to 4.1 and 3.7 Wm-2, respectively, over the 1984-2000 period (equivalent to 2.4 and 2.2 Wm-2 per decade), indicating an increasing surface solar radiative heating. This surface SW radiative heating is primarily attributed to clouds, especially low-level, and secondarily to other parameters such as total precipitable water. The surface solar heating occurs mainly in the period starting from the early 1990s, in contrast to decreasing trend in DSR through the late 1980s. The computed global mean DSR and net DSR flux anomalies were found to range within ±8 and ±6 Wm-2, respectively, with signals from El Niño and La Niña events, and the Pinatubo eruption, whereas significant positive anomalies have occurred in the period 1992-2000.


2011 ◽  
Vol 5 (1) ◽  
pp. 271-305
Author(s):  
M. Dumont ◽  
P. Sirguey ◽  
Y. Arnaud ◽  
D. Six

Abstract. Accurate knowledge of temperate glacier mass balance is essential to understand the relationship between glacier and climate. Defined as the reflected fraction of incident radiation over the whole solar spectrum, the surface broadband albedo is one of the leading variable of their mass balance. This study presents a new method to retrieve the albedo of frozen surfaces from terrestrial photography at visible and near infrared wavelengths. This method accounts for the anisotropic reflectance of snow and ice surfaces and uses a radiative transfer model for narrow-to-broadband conversion. The accuracy of the method was assessed using concomitant measurements of albedo during the summers 2008 and 2009 on Saint Sorlin Glacier (Grandes Rousses, France). These albedo measurements are performed at two locations on the glacier, one in the ablation area and the other in the accumulation zone, with a net radiometer Kipp and Zonen CNR1. Main sources of uncertainty are associated with the presence of high clouds and the georeferencing of the photographs.


2011 ◽  
Vol 5 (3) ◽  
pp. 759-771 ◽  
Author(s):  
M. Dumont ◽  
P. Sirguey ◽  
Y. Arnaud ◽  
D. Six

Abstract. Accurate knowledge of temperate glacier mass balance is essential to understand the relationship between glacier and climate. Defined as the reflected fraction of incident radiation over the whole solar spectrum, the surface broadband albedo is one of the most important variable in a glacier's mass balance. This study presents a new method to retrieve the albedo of frozen surfaces from terrestrial photography at visible and near infrared wavelengths. This method accounts for the anisotropic reflectance of snow and ice surfaces and uses a radiative transfer model for narrow-to-broadband conversion. The accuracy of the method was assessed using concomitant measurements of albedo during the summers 2008 and 2009 on Saint Sorlin Glacier (Grandes Rousses, France). These albedo measurements are performed at two locations on the glacier, one in the ablation area and the other in the accumulation zone, with a net radiometer Kipp and Zonen CNR1. The main sources of uncertainty are associated with the presence of high clouds and the georeferencing of the photographs.


2021 ◽  
Vol 13 (11) ◽  
pp. 2061
Author(s):  
Mikhail V. Belikovich ◽  
Mikhail Yu. Kulikov ◽  
Dmitry S. Makarov ◽  
Natalya K. Skalyga ◽  
Vitaly G. Ryskin ◽  
...  

Ground-based microwave radiometers are increasingly used in operational meteorology and nowcasting. These instruments continuously measure the spectra of downwelling atmospheric radiation in the range 20–60 GHz used for the retrieval of tropospheric temperature and water vapor profiles. Spectroscopic uncertainty is an important part of the retrieval error budget, as it leads to systematic bias. In this study, we analyze the difference between observed and simulated microwave spectra obtained from more than four years of microwave and radiosonde observations over Nizhny Novgorod (56.2° N, 44° E). We focus on zenith-measured and elevation-scanning data in clear-sky conditions. The simulated spectra are calculated by a radiative transfer model with the use of radiosonde profiles and different absorption models, corresponding to the latest spectroscopy research. In the case of zenith-measurements, we found a systematic bias (up to ~2 K) of simulated spectra at 51–54 GHz. The sign of bias depends on the absorption model. A thorough investigation of the error budget points to a spectroscopic nature of the observed differences. The dependence of the results on the elevation angle and absorption model can be explained by the basic properties of radiative transfer and by cloud contamination at elevation angles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qinghong Zeng ◽  
Shengbo Chen ◽  
Yuanzhi Zhang ◽  
Yongling Mu ◽  
Rui Dai ◽  
...  

AbstractWe report on the mineralogical and chemical properties of materials investigated by the lunar rover Yutu-2, which landed on the Von Kármán crater in the pre-Nectarian South Pole–Aitken (SPA) basin. Yutu-2 carried several scientific payloads, including the Visible and Near-infrared Imaging Spectrometer (VNIS), which is used for mineral identification, offering insights into lunar evolution. We used 86 valid VNIS data for 21 lunar days, with mineral abundance obtained using the Hapke radiative transfer model and sparse unmixing algorithm and chemical compositions empirically estimated. The mineralogical properties of the materials at the Chang’E-4 (CE-4) site referred to as norite/gabbro, based on findings of mineral abundance, indicate that they may be SPA impact melt components excavated by a surrounding impact crater. We find that CE-4 materials are dominated by plagioclase and pyroxene and feature little olivine, with 50 of 86 observations showing higher LCP than HCP in pyroxene. In view of the effects of space weathering, olivine content may be underestimated, with FeO and TiO2 content estimated using the maturity-corrected method. Estimates of chemical content are 7.42–18.82 wt% FeO and 1.48–2.1 wt% TiO2, with a low-medium Mg number (Mg # ~ 55). Olivine-rich materials are not present at the CE-4 landing site, based on the low-medium Mg #. Multi-origin materials at the CE-4 landing site were analyzed with regard to concentrations of FeO and TiO2 content, supporting our conclusion that the materials at CE-4 do not have a single source but rather are likely a mixture of SPA impact melt components excavated by surrounding impact crater and volcanic product ejecta.


Author(s):  
H. Lin ◽  
X. Zhang ◽  
Y. Yang ◽  
X. Wu ◽  
D. Guo

From geologic perspective, understanding the types, abundance, and size distributions of minerals allows us to address what geologic processes have been active on the lunar and planetary surface. The imaging spectrometer which was carried by the Yutu Rover of Chinese Chang’E-3 mission collected the reflectance at four different sites at the height of ~ 1 m, providing a new insight to understand the lunar surface. The mineral composition and Particle Size Distribution (PSD) of these four sites were derived in this study using a Radiative Transfer Model (RTM) and Sparse Unmixing (SU) algorithm. The endmembers used were clinopyroxene, orthopyroxene, olivine, plagioclase and agglutinate collected from the lunar sample spectral dataset in RELAB. The results show that the agglutinate, clinopyroxene and olivine are the dominant minerals around the landing site. In location Node E, the abundance of agglutinate can reach up to 70 %, and the abundances of clinopyroxene and olivine are around 10 %. The mean particle sizes and the deviations of these endmembers were retrieved. PSDs of all these endmembers are close to normal distribution, and differences exist in the mean particle sizes, indicating the difference of space weathering rate of these endmembers.


2016 ◽  
Author(s):  
Ghislain Picard ◽  
Quentin Libois ◽  
Laurent Arnaud

Abstract. Ice is a highly transparent material in the visible. According to the most widely used database (Warren and Brandt, 2008; IA2008), the ice absorption coefficient reaches values lower than 10−3 m−1 around 400 nm. These values were obtained from a radiance profile measured in a single snow layer at Dome C in Antarctica. We reproduced this experiment using a fiber optics inserted in the snow to record 56 profiles from which 70 homogeneous layers were identified. Applying the same estimation method on every layer yields 70 ice absorption spectra with a significant variability and overall larger than IA2008 by one order of magnitude. We devise another estimation method based on Bayesian inference. It reduces the statistical variability and confirms the higher absorption, around 2 × 10−2 m−1 near the minimum at 440 nm. We explore potential instrumental artifacts by developing a 3D radiative transfer model able to explicitly account for the presence of the fiber in the snow. The simulation results show that the radiance profile is indeed perturbed by the fiber intrusion but the error on the ice absorption estimate is not larger than a factor 2. This is insufficient to explain the difference between our new estimate and IA2008. Nevertheless, considering the number of profiles acquired for this study and other estimates from the Antarctic Muon and Neutrino Detector Array (AMANDA), we estimate that ice absorption values around 10−2 m−1 at the minimum are more likely than under 10−3 m−1. We provide a new estimate in the range 400–600 nm for future modeling of snow, cloud, and sea-ice optical properties. Most importantly we recommend that modeling studies take into account the large uncertainty of the ice absorption coefficient in the visible.


2013 ◽  
Vol 10 (9) ◽  
pp. 15373-15414 ◽  
Author(s):  
J. Otto ◽  
D. Berveiller ◽  
F.-M. Bréon ◽  
N. Delpierre ◽  
G. Geppert ◽  
...  

Abstract. Despite an emerging body of literature linking canopy albedo to forest management, understanding of the process is still fragmented. We combined a stand-level forest gap model with a canopy radiation transfer model and satellite-derived model parameters to quantify the effects of forest thinning, that is removing trees at a certain time during the forest rotation, on summertime canopy albedo. The effects of different forest species (pine, beech, oak) and four thinning strategies (light to intense thinning regimes) were examined. During stand establishment, summertime canopy albedo is driven by tree species. In the later stages of stand development, the effect of tree species on summertime canopy albedo decreases in favour of an increasing influence of forest thinning on summertime canopy albedo. These trends continue until the end of the rotation where thinning explains up to 50% of the variance in near-infrared canopy albedo and up to 70% of the variance in visible canopy albedo. More intense thinning lowers the summertime shortwave albedo in the canopy by as much as 0.02 compared to unthinned forest. The structural changes associated with forest thinning can be described by the change in LAI in combination with crown volume. However, forests with identical canopy structure can have different summertime albedo values due to their location: the further north a forest is situated, the more the solar zenith angle increases and thus the higher is the summertime canopy albedo, independent of the wavelength. Despite the increase of absolute summertime canopy albedo values with latitude, the difference in canopy albedo between managed and unmanaged forest decreases with increasing latitude. Forest management thus strongly altered summertime forest albedo.


2020 ◽  
Vol 12 (9) ◽  
pp. 1401
Author(s):  
Dong Zhao ◽  
Yuta Asano ◽  
Lin Gu ◽  
Imari Sato ◽  
Huixin Zhou

In this paper, we propose a novel city-scale distance sensing algorithm based on atmosphere optics. The suspended particles, especially in bad weather, would attenuate the light at almost all wavelengths. Observing this fact and starting from the light scattering mechanism, we derive a bispectral distance sensing algorithm by leveraging the difference of extinction coefficient between two specifically selected near infrared wavelengths. The extinction coefficient of the atmosphere is related to both wavelength and meteorological conditions, also known as visibility, such as the fog and haze day. To account for different bad weather conditions, we explicitly introduce visibility into our algorithm by incorporating it into the calculation of extinction coefficient, making our algorithm simple yet effective. To capture the data, we build a bispectral imaging system that is able to take a pair of images with a monochrome camera and two narrow band-pass filters. We also present a wavelength selection strategy that allows us to accurately sense distance regardless of material reflectance and texture. Specifically, this strategy determines two distinct near infrared wavelengths by maximising the extinction coefficient difference while minimizing the influence of building’s reflectance variance. The experiments empirically validate our model and its practical performance on the distance sensing for the city-scale buildings.


Sign in / Sign up

Export Citation Format

Share Document