scholarly journals PRELIMINARY TESTS OF A NEW LOW-COST PHOTOGRAMMETRIC SYSTEM

Author(s):  
M. Santise ◽  
K. Thoeni ◽  
R. Roncella ◽  
S. W. Sloan ◽  
A. Giacomini

This paper presents preliminary tests of a new low-cost photogrammetric system for 4D modelling of large scale areas for civil engineering applications. The system consists of five stand-alone units. Each of the units is composed of a Raspberry Pi 2 Model B (RPi2B) single board computer connected to a PiCamera Module V2 (8 MP) and is powered by a 10 W solar panel. The acquisition of the images is performed automatically using Python scripts and the OpenCV library. Images are recorded at different times during the day and automatically uploaded onto a FTP server from where they can be accessed for processing. Preliminary tests and outcomes of the system are discussed in detail. The focus is on the performance assessment of the low-cost sensor and the quality evaluation of the digital surface models generated by the low-cost photogrammetric systems in the field under real test conditions. Two different test cases were set up in order to calibrate the low-cost photogrammetric system and to assess its performance. First comparisons with a TLS model show a good agreement.

2010 ◽  
Vol 67 (6) ◽  
pp. 727-730 ◽  
Author(s):  
Leonardo Oliveira Medici ◽  
Hermes Soares da Rocha ◽  
Daniel Fonseca de Carvalho ◽  
Carlos Pimentel ◽  
Ricardo Antunes Azevedo

Despite the massive demand of water for plant irrigation, there are few devices being used in the automation of this process in agriculture. This work evaluates a simple controller to water plants automatically that can be set up with low cost commercial materials, which are large-scale produced. This controller is composed by a ceramic capsule used in common domestic water filters; a plastic tube around 1.5 m long, and a pressostate used in domestic washing machines. The capsule and the pressostate are connected through the tube so that all parts are filled with water. The ceramic capsule is the sensor of the controller and has to be placed into the plant substrate. The pressostate has to be placed below the sensor and the lower it is, the higher is the water tension to start the irrigation, since the lower is the pressostate the higher is the water column above it and, therefore, the higher is the tension inside the ceramic cup to pull up the water column. The controller was evaluated in the control of drip irrigation for small containers filled with commercial organic substrate or soil. Linear regressions explained the relationship between the position of pressostate and the maximum water tension in the commercial substrate (p < 0.0054) and soil (p < 0.0001). Among the positions of the pressostate from 0.30 to 0.90 m below the sensor, the water tension changed from 1 to 8 kPa for commercial substrate and 4 to 13 kPa for the soil. This simple controller can be useful to grow plants, applying water automatically in function of the water tension of the plant substrate.


Author(s):  
Anjan Pakhira ◽  
Peter Andras

Testing is a critical phase in the software life-cycle. While small-scale component-wise testing is done routinely as part of development and maintenance of large-scale software, the system level testing of the whole software is much more problematic due to low level of coverage of potential usage scenarios by test cases and high costs associated with wide-scale testing of large software. Here, the authors investigate the use of cloud computing to facilitate the testing of large-scale software. They discuss the aspects of cloud-based testing and provide an example application of this. They describe the testing of the functional importance of methods of classes in the Google Chrome software. The methods that we test are predicted to be functionally important with respect to a functionality of the software. The authors use network analysis applied to dynamic analysis data generated by the software to make these predictions. They check the validity of these predictions by mutation testing of a large number of mutated variants of the Google Chrome. The chapter provides details of how to set up the testing process on the cloud and discusses relevant technical issues.


2015 ◽  
pp. 1175-1203
Author(s):  
Anjan Pakhira ◽  
Peter Andras

Testing is a critical phase in the software life-cycle. While small-scale component-wise testing is done routinely as part of development and maintenance of large-scale software, the system level testing of the whole software is much more problematic due to low level of coverage of potential usage scenarios by test cases and high costs associated with wide-scale testing of large software. Here, the authors investigate the use of cloud computing to facilitate the testing of large-scale software. They discuss the aspects of cloud-based testing and provide an example application of this. They describe the testing of the functional importance of methods of classes in the Google Chrome software. The methods that we test are predicted to be functionally important with respect to a functionality of the software. The authors use network analysis applied to dynamic analysis data generated by the software to make these predictions. They check the validity of these predictions by mutation testing of a large number of mutated variants of the Google Chrome. The chapter provides details of how to set up the testing process on the cloud and discusses relevant technical issues.


2016 ◽  
Vol 861 ◽  
pp. 556-563 ◽  
Author(s):  
Matthias Schuss ◽  
Stefan Glawischnig ◽  
Ardeshir Mahdavi

Efforts toward optimized building management and operation require monitoring data from multiple sources. Experiences from previous research projects underline the need for an easily adaptable, low-cost, and easy to set up monitoring infrastructure that could provide data for modeling and performance evaluation. The increasing availability of small and powerful development boards (e.g. Raspberry Pi BeagleBoard or Arduino) facilitates the implementation of a cost-efficient infrastructure for data collection and building monitoring. For the purpose of the present contribution, the Arduino Yún was used to create a data logger that obtains data from wireless sensors, stores it locally, and syncs it with a data repository. Toward this end, we have developed a web-based user interface that enables the user to evaluate various aspects of the monitored building's performance. The communication between the software components is implemented via RESTful interfaces and enables the user to integrate also other data sources such as web services. The paper includes an actual implementation of the above approach. Thereby, we illustrate how the constitutive system components can be integrated in terms of a versatile monitoring system with multiple utilities in terms of building performance assessment and building diagnostics.


2010 ◽  
Vol 133-134 ◽  
pp. 497-502 ◽  
Author(s):  
Alvaro Quinonez ◽  
Jennifer Zessin ◽  
Aissata Nutzel ◽  
John Ochsendorf

Experiments may be used to verify numerical and analytical results, but large-scale model testing is associated with high costs and lengthy set-up times. In contrast, small-scale model testing is inexpensive, non-invasive, and easy to replicate over several trials. This paper proposes a new method of masonry model generation using three-dimensional printing technology. Small-scale models are created as an assemblage of individual blocks representing the original structure’s geometry and stereotomy. Two model domes are tested to collapse due to outward support displacements, and experimental data from these tests is compared with analytical predictions. Results of these experiments provide a strong understanding of the mechanics of actual masonry structures and can be used to demonstrate the structural capacity of masonry structures with extensive cracking. Challenges for this work, such as imperfections in the model geometry and construction problems, are also addressed. This experimental method can provide a low-cost alternative for the collapse analysis of complex masonry structures, the safety of which depends primarily on stability rather than material strength.


MRS Advances ◽  
2019 ◽  
Vol 4 (35) ◽  
pp. 1913-1928
Author(s):  
Sishi Li ◽  
Yanpeng Yang ◽  
Gongsheng Song ◽  
Qiang Fu ◽  
Chunxu Pan

ABSTRACTDeveloping metal-based composite coatings with improved mechanical properties and good corrosion resistance has been an attractive research topic in recent years. Graphene (Gr), as a new type of two-dimensional (2D) carbon nanomaterial with excellent physical, chemical and mechanical properties, can be used as a reinforcement to improve hardness, tensile strength, wear and corrosion resistance of metal-based composites. There have been substantial efforts focused on the fabrication of metal-Gr composite coatings via various approaches. Electro-deposition is an effective electrochemical method with wide range of advantages, such as a fast deposition rate, simple set-up with large scale production and relatively low cost. This overview covers the previous research and development studies on metal-Gr composite coatings using electro-deposition method and the resulting properties. In addition, recent work in this area which provides a developed process with industrial production perspective, is discussed.


2014 ◽  
Author(s):  
Adam Z Lendvai ◽  
Çağlar Akçay ◽  
Talia Weiss ◽  
Mark F. Haussmann ◽  
Ignacio T Moore ◽  
...  

Carrying out playbacks of visual or audio stimuli to wild animals is a widely used experimental tool in behavioral ecology. In many cases, however, playback experiments are constrained by observer limitations such as the time observers can be present, or the accuracy of observation. These problems are particularly apparent when playbacks are triggered by specific events or are targeted to specific individuals. We developed a low-cost automated playback/recording system, using two field-deployable devices: radio-frequency identification (RFID) readers and Raspberry Pi micro-computers. This system detects a specific passive integrated transponder (PIT) tag attached to an individual, and subsequently plays back the stimuli, or records audio or visual information. To demonstrate the utility of this system, we tagged female and male tree swallows from two box-nesting populations with PIT tags and carried out playbacks of nestling begging calls every time females entered the nestbox over a six-hour period. We show that the RFID-Raspberry Pi system presents a versatile, low-cost, field-deployable system that can be adapted for many audio and visual playback purposes. The low cost and the small learning curve make this set-up a feasible system for use by field biologists.


2021 ◽  
Author(s):  
Jolle Wolter Jolles

The field of biology has seen tremendous technological progress in recent years, fuelled by the exponential growth in processing power and high-level computing, and the rise of global information sharing. Low-cost single-board computers are predicted to be one of the key technological advancements to further revolutionise this field. So far, an overview of current uptake of these devices and a general guide to help researchers integrate them in their work has been missing. In this paper I focus on the most widely used single board computer, the Raspberry Pi. Reviewing its broad applications and uses across the biological domain shows that since its release in 2012 the Raspberry Pi has been increasingly taken up by biologists, both in the lab, the field, and in the classroom, and across a wide range of disciplines. A hugely diverse range of applications already exist that range from simple solutions to dedicated custom-build devices, including nest-box monitoring, wildlife camera trapping, high-throughput behavioural recordings, large-scale plant phenotyping, underwater video surveillance, closed-loop operant learning experiments, and autonomous ecosystem monitoring. Despite the breadth of its implementations, the depth of uptake of the Raspberry Pi by the scientific community is still limited. The broad capabilities of the Raspberry Pi, combined with its low cost, ease of use, and large user community make it a great research tool for almost any project. To help accelerate the uptake of Raspberry Pi’s by the scientific community, I provide detailed guidelines, recommendations, and considerations, and 30+ step-by-step guides on a dedicated accompanying website (raspberrypi-guide.github.io). I hope with this paper to generate more awareness about the Raspberry Pi and thereby fuel the democratisation of science and ultimately help advance our understanding of biology, from the micro- to the macro-scale.


Author(s):  
Adam Z Lendvai ◽  
Çağlar Akçay ◽  
Talia Weiss ◽  
Mark F. Haussmann ◽  
Ignacio T Moore ◽  
...  

Carrying out playbacks of visual or audio stimuli to wild animals is a widely used experimental tool in behavioral ecology. In many cases, however, playback experiments are constrained by observer limitations such as the time observers can be present, or the accuracy of observation. These problems are particularly apparent when playbacks are triggered by specific events or are targeted to specific individuals. We developed a low-cost automated playback/recording system, using two field-deployable devices: radio-frequency identification (RFID) readers and Raspberry Pi micro-computers. This system detects a specific passive integrated transponder (PIT) tag attached to an individual, and subsequently plays back the stimuli, or records audio or visual information. To demonstrate the utility of this system, we tagged female and male tree swallows from two box-nesting populations with PIT tags and carried out playbacks of nestling begging calls every time females entered the nestbox over a six-hour period. We show that the RFID-Raspberry Pi system presents a versatile, low-cost, field-deployable system that can be adapted for many audio and visual playback purposes. The low cost and the small learning curve make this set-up a feasible system for use by field biologists.


2020 ◽  
Vol 52 (3) ◽  
pp. 05-07
Author(s):  
Nicolette Léveillé

Water is an essential component required for people and thusly there must be instruments set up to overwhelmingly test the nature of savouring water ongoing. The traditional strategy for taxing water excellence is to accumulate tests of water physically and investigate. This strategy is tedious, surplus of labour, and not conservative. This paper proposes a minimal effort framework for constant water contamination observing and domineering utilizing IoT. The Zig-Bee module in the framework moves information gathered by the sensors to the micro-controller remotely, and GSM based module moves remotely the information MC to PC. The sensor esteems prepared by Raspberry pi and send to the cloud. The framework likewise has nearness sensors to make the authorities by communicating something specific aware of them through the GSM module in the event that somebody attempts to contaminate the water body. This framework can keep an exacting mind the contamination of the water assets and have the option to give a situation to safe drinking water.


Sign in / Sign up

Export Citation Format

Share Document