scholarly journals EVACUATION SIMULATION IN KALAYAAN RESIDENCE HALL, UP DILIMAN USING GAMA SIMULATION SOFTWARE

Author(s):  
A. R. C. Claridades ◽  
J. K. S. Villanueva ◽  
E. G. Macatulad

Agent-Based Modeling (ABM) has recently been adopted in some studies for the modelling of events as a dynamic system given a set of events and parameters. In principle, ABM employs individual agents with assigned attributes and behaviors and simulates their behavior around their environment and interaction with other agents. This can be a useful tool in both micro and macroscale-applications. In this study, a model initially created and applied to an academic building was implemented in a dormitory. In particular, this research integrates three-dimensional Geographic Information System (GIS) with GAMA as the multi-agent based evacuation simulation and is implemented in Kalayaan Residence Hall. A three-dimensional GIS model is created based on the floor plans and demographic data of the dorm, including respective pathways as networks, rooms, floors, exits and appropriate attributes. This model is then re-implemented in GAMA. Different states of the agents and their effect on their evacuation time were then observed. GAMA simulation with varying path width was also implemented. It has been found out that compared to their original states, panic, eating and studying will hasten evacuation, and on the other hand, sleeping and being on the bathrooms will be impedances. It is also concluded that evacuation time will be halved when path widths are doubled, however it is recommended for further studies for pathways to be modeled as spaces instead of lines. A more scientific basis for predicting agent behavior in these states is also recommended for more realistic results.

2013 ◽  
Vol 765-767 ◽  
pp. 1928-1931
Author(s):  
Li Li He ◽  
Xiao Chun Lou

Multi-agent formation control is the process in which the teams formed by multiple agents move to specific target or specific direction. The formation method of the linear formation and circular formation are given in this paper, based on the geometric characteristics of the formation formed by multi-agent. The process in which 5 agents arrived at the designated target point and formed a linear formation is achieved through simulation; and 4 agents formed a circular formation and cooperated to carry heavy weights. The result of the three-dimensional simulation shows the feasibility of the method to form multi-agent formations in different environments and different tasks.


Author(s):  
Takao Kakizaki ◽  
Mitsuru Endo ◽  
Jiro Urii

The 3D mass evacuation simulation of an airplane accident is experimentally verified. Evacuee motion has been experimentally investigated by building a test field that emulates the interior of an actual regional airliner with a capacity of approximately 100 passengers. The experiment results indicate that the evacuation time tends to be affected by the number of passengers and the evacuee guidance at the emergency exit. The results also indicate that any evacuation delay in exiting by individual passengers only slightly affects the total evacuation time because of evacuee congestion in the aisles. Moreover, the importance of evacuation guidance notification was investigated based on the evacuation-order variance. Finally, the experimental results were compared to the corresponding simulation results. Simulations using appropriate evacuee walking speeds can provide valid evacuation times, which are the most important factor in designing evacuation drills. Consequently, these results should be applied to existing 3D simulations using precise kinematic digital human (KDH) models for more accurate mass evacuation/rescue simulations.


2020 ◽  
Vol 8 (5) ◽  
pp. 1187-1192

Crowd simulation is an active research domain and is crucial for simulating crowd behaviour in certain condition such as normal or panic situation. The simulation is to show the interaction between the individual in a crowd. Nowadays, there are many kinds of scenarios as well as simulation softwares that can be adapted to simulate a crowd simulation such as during emergency situation e.g. building evacuation. Crowd simulation in three-dimensional platform is fairly important in order to have a more realistic looks and movement of the crowd in one particular environment. The evacuation simulation is useful for the crowd in one confinement to seek for a safe exit path in shortest time possible and thus increase the occupant’s safety. The evacuation time is said to be in safe condition if all the evacuees successfully can get through the exit in minimal time. To aid in minimal exit time, the concept of faster-is-slower (bottleneck) must be solved as it can lead to more waiting time or delay during evacuation process. In this paper, it will discuss about the crowd simulation behavior, crowd simulation based on agent-based model, existing crowd simulation tools and the result of simulating the three-dimensional (3D) crowd evacuation time based on a number of exits variation in panic situation. The tools used to carry out the experiment is Anylogic software whereby the results show that it adheres to shorter evacuation time when the number of exit increases. The 3D layout design was following the original layout the faculty’s lower ground floor where the classrooms are mostly resided. The simulation is useful in order to estimate of evacuation time with different total number of exits to alleviate the faster-is-slower effect in case of any emergency situation happens at the faculty building.


2014 ◽  
Vol 1030-1032 ◽  
pp. 2044-2049
Author(s):  
Can Can Zhao ◽  
Xiao Hong Guo ◽  
Juxihong Julaiti ◽  
Jie Wang

In order to analyze the evacuation behaviors and optimize evacuation strategies for rail transit system, an evacuation agent centered simulation model was proposed. Firstly, by considering the attributes, status and decision-making behaviors of evacuation personnel, the evacuation agent model was established, and the running principle as well as construction process of multi-agent simulation model was discussed. Then, the specific definition and design for the agent attributes and evacuation behavior protocol were provided. Finally, based on the simulation model proposed, an evacuation simulation platform for the military museum station of Beijing subway line 9 was established by using REPAST and JAVA, several evacuation strategies were tested and optimized.


2010 ◽  
Vol 108-111 ◽  
pp. 525-529
Author(s):  
Yi Kui Mo ◽  
Xiang Rong Qiao ◽  
Yong Yun Su

In light of the characteristics of transit passenger’s route choice behavior, this paper introduces a multi-agent based simulation approach into the study of this behavior.At first, the paper analyzes factors affecting transit passenger’s route choice behavior and then studies the rules of behavior for transit passengers when making route choices. The paper further proposes a utility function for selected routes and examines ways to investigate and analyze corresponding data so as to provide a basis for the modeling of passenger agent’s route choice behavior. Following this, the paper builds up a simulation system for transit passenger’s route choice behavior based on the multi-agent simulation software Starlogo developed by Massachusetts Institute of Technology (MIT), and explains the process that will actually take place when using the simulation system. Finally, inadequacies of the study are analyzed and the focus of further research is indicated.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Andreas Gobbin ◽  
Raman Khosravi ◽  
Andreas Bardenhagen

AbstractIn order to receive certification approval for new products, aircraft manufacturers have to comply with the specifications regarding cabin evacuation. In case of real evacuation trials, agent-based simulation can be deployed, as they are a less cost-intensive mean of analysing passenger behaviour during the evacuation of commercial aircraft. This paper aims at examining the suitability of agent-based simulation software to reproduce passenger behaviour during evacuation processes. For this purpose, the algorithms and methods of the software PATHFINDER are introduced. Besides, the cabin of a single aisle aircraft is reconstructed in a high-density configuration using software-specific tools. A representative passenger distribution is implemented according to EASA regulations. Evacuation simulations for a single-aisle aircraft are conducted taking EASA standards into account. The effect of vital parameters such as walking speed, body dimension, conflict behaviour, collision response, acceleration time and exit allocation on evacuation times are examined. Results are discussed and examined for plausibility in order to determine whether evacuation simulations of commercial aircraft are possible using agent-based simulation software.


Fire ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 21
Author(s):  
Michael Gerges ◽  
Peter Demian ◽  
Zulfikar Adamu

As the possibility of safe escape is one of the most crucial aspects of a building’s fire safety features, understanding of human behaviour under fire conditions is important for a successful evacuation. Although most of today’s buildings are equipped with fire safety systems, a fire can still occur at anytime and anywhere in a building and have devastating consequences. In the last decade, researchers and practitioners have used information technology to assist with fire safety design and emergency management. Building Information Modelling (BIM) is an exemplar process whose underpinning digital technology has been helpful for fire safety design, simulation, and analysis, but there is a lack of research on how BIM-based models combined with agent-based simulations can help improve evacuation via effective navigation and wayfinding in high-rise residential buildings. Customising evacuation instructions based on BIM, simulation results and occupant location, and delivery of these bespoke instructions to occupants’ smartphones during a fire emergency is relatively novel and research is needed to realise the potential of this approach. Therefore, this study investigates how customised evacuation instructions delivered to each occupant in a high-rise residential building could result in a faster evacuation during a fire incident. The research adopted a case study building and used Pathfinder (agent-based evacuation simulation software) to simulate evacuation from this eleven-floor high-rise residential building in Cairo, Egypt. Constraining evacuees (simulated agents in Pathfinder) to take particular exit routes was used as a proxy for delivering customised evacuation instructions to actual evacuees. Simulation results show that, in general, allowing the use of lifts for the benefit of disabled occupants could lead to their misuse by able-bodied occupants; evacuees would attempt to use the first visible point of exit regardless of how crowded it is. With optimally customised instructions, the evacuation time was, on average, 17.6 min (almost 50%) shorter than when the occupant’s choice of egress route was simulated based on standard path planning factors such as route length, nearby crowds and visible hazards. With evacuation instructions sent via smartphones, occupants could exit more rapidly via alternative routes. Such bespoke instructions were shown to reduce the adverse effects of crowdedness and uneven distribution of occupants along vertical and horizontal evacuation routes on evacuation time.


Biosystems ◽  
2010 ◽  
Vol 100 (3) ◽  
pp. 225-230 ◽  
Author(s):  
Viviane Galvão ◽  
José Garcia Vivas Miranda

Sign in / Sign up

Export Citation Format

Share Document