scholarly journals BEECH TREE DENSITY ESTIMATION USING SENTINEL-2 DATA (CASE STUDY: KHYROUD FOREST)

Author(s):  
G. Ronoud ◽  
A. A. Darvish Sefat ◽  
P. Fatehi

Abstract. Obtaining information about forest attributes is essential for planning, monitoring, and management of forests. Due to the time and cost consuming of Tree Density (TD) using field measurements especially in the vast and remote areas, remote sensing techniques have gained more attention in scientific community. Khyroud forest, a part of Hyrcanian forest of Iran, with a high species biodiversity and growing volume stock plays an important role in carbon storage. The aim of this study was to assess the capability of Sentinel-2 data for estimating the tree density in the Khyroud forest. 65 square sample plots with an area of 2025 m2 were measured. In each sample plot, trees with diameter at the breast height (DBH) higher than 7.5-cm were recorded. The quality of Sentinel-2 data in terms of geometric correction and cloud effect were investigated. Different processing approaches such as vegetation indices and Tasseled Cap transformation on spectral bands in combination with an empirical approach were implemented. Also, some of biophysical variables were computed. To assess the model performance, the data were randomly divided into parts, 70% of sample plots were used for modelling and 30% for validation. The results showed that the SVR algorithm (linear kernel) with a relative RMSE of 23.09% and a R2 of 0.526 gained the highest performance for tree density estimation.

2019 ◽  
Vol 11 (7) ◽  
pp. 799 ◽  
Author(s):  
Rachel Lugassi ◽  
Eli Zaady ◽  
Naftaly Goldshleger ◽  
Maxim Shoshany ◽  
Alexandra Chudnovsky

Frequent, region-wide monitoring of changes in pasture quality due to human disturbances or climatic conditions is impossible by field measurements or traditional ecological surveying methods. Remote sensing imagery offers distinctive advantages for monitoring spatial and temporal patterns. The chemical parameters that are widely used as indicators of ecological quality are crude protein (CP) content and neutral detergent fiber (NDF) content. In this study, we investigated the relationship between CP, NDF, and reflectance in the visible–near-infrared–shortwave infrared (VIS–NIR–SWIR) spectral range, using field, laboratory measurements, and satellite imagery (Sentinel-2). Statistical models were developed using different calibration and validation data sample sets: (1) a mix of laboratory and field measurements (e.g., fresh and dry vegetation) and (2) random selection. In addition, we used three vegetation indices (Normalized Difference Vegetative Index (NDVI), Soil-adjusted Vegetation Index (SAVI) and Wide Dynamic Range Vegetation Index (WDRVI)) as proxies to CP and NDF estimation. The best models found for predicting CP and NDF contents were based on reflectance measurements (R2 = 0.71, RMSEP = 2.1% for CP; and R2 = 0.78, RMSEP = 5.5% for NDF). These models contained fresh and dry vegetation samples in calibration and validation data sets. Random sample selection in a model generated similar accuracy estimations. Our results also indicate that vegetation indices provide poor accuracy. Eight Sentinel-2 images (December 2015–April 2017) were examined in order to better understand the variability of vegetation quality over spatial and temporal scales. The spatial and temporal patterns of CP and NDF contents exhibit strong seasonal dependence, influenced by climatological (precipitation) and topographical (northern vs. southern hillslopes) conditions. The total CP/NDF content increases/decrease (respectively) from December to March, when the concentrations reach their maximum/minimum values, followed by a decline/incline that begins in April, reaching minimum values in July.


2020 ◽  
Vol 12 (7) ◽  
pp. 1176 ◽  
Author(s):  
Yukun Lin ◽  
Zhe Zhu ◽  
Wenxuan Guo ◽  
Yazhou Sun ◽  
Xiaoyuan Yang ◽  
...  

Monitoring cotton status during the growing season is critical in increasing production efficiency. The water status in cotton is a key factor for yield and cotton quality. Stem water potential (SWP) is a precise indicator for assessing cotton water status. Satellite remote sensing is an effective approach for monitoring cotton growth at a large scale. The aim of this study is to estimate cotton water stress at a high temporal frequency and at a large scale. In this study, we measured midday SWP samples according to the acquisition dates of Sentinel-2 images and used them to build linear-regression-based and machine-learning-based models to estimate cotton water stress during the growing season (June to August, 2018). For the linear-regression-based method, we estimated SWP based on different Sentinel-2 spectral bands and vegetation indices, where the normalized difference index 45 (NDI45) achieved the best performance (R2 = 0.6269; RMSE = 3.6802 (-1*swp (bars))). For the machine-learning-based method, we used random forest regression to estimate SWP and received even better results (R2 = 0.6709; RMSE = 3.3742 (-1*swp (bars))). To find the best selection of input variables for the machine-learning-based approach, we tried three different data input datasets, including (1) 9 original spectral bands (e.g., blue, green, red, red edge, near infrared (NIR), and shortwave infrared (SWIR)), (2) 21 vegetation indices, and (3) a combination of original Sentinel-2 spectral bands and vegetation indices. The highest accuracy was achieved when only the original spectral bands were used. We also found the SWIR and red edge band were the most important spectral bands, and the vegetation indices based on red edge and NIR bands were particularly helpful. Finally, we applied the best approach for the linear-regression-based and the machine-learning-based methods to generate cotton water potential maps at a large scale and high temporal frequency. Results suggests that the methods developed here has the potential for continuous monitoring of SWP at large scales and the machine-learning-based method is preferred.


2021 ◽  
Author(s):  
Jessica Cristina Carvalho Medeiros ◽  
Maurício Perine ◽  
Marcelo Pompêo ◽  
Marisa Bitencourt

Abstract Freshwater resources faces threats with aquatic plants invasion, considered biological pollution with deep effects on water quality and nutrients cycling due to their rapid growth. Orbital remote sensing has been an effective instrument of monitoring large water bodies. Thus, the aim of this study was to analyze the relation between reflectance and field measurements (biomass and nitrogen concentration) of aquatic plants to develop estimation equations and to test vegetation indices to use in orbital remote sensing. The most common tropical infesting species (Salvinia auriculata, Pistia stratiotes, Eichhornia crassipes and Eichhornia azurea) were collected during a year, measured their spectral response to simulate satellite bands, and the biomass and nitrogen concentration measurements. The bands intervals of Sentinel-2 satellite were choosing to the simulation due to their narrow bands and the RedEdge new band. The obtained field data were correlated with the reflectance obtained from spectroradiometry of each species and the equations showed R² = 0.64 to estimate biomass and R² = 0.60 to estimate nitrogen using the entire spectrum. Several indices described in the literature were tested with different Sentinel-2 bands but with no significant results. The NDVI index showed a separation among species using RedEdge band and can be used to identify the species, but not to estimate their biomass.


2017 ◽  
Vol 8 (2) ◽  
pp. 338-342 ◽  
Author(s):  
J. González-Piqueras ◽  
H. Lopez-Corcoles ◽  
S. Sánchez ◽  
J. Villodre ◽  
V. Bodas ◽  
...  

Intensive agriculture has the objective to increase nutrients use efficiency. Nitrogen (N) is a key nutrient for crops and the estimations of crop N status allow adjusting the fertilization levels to crop requirements, while reducing the environmental costs and optimizing the benefits for farmers. In this work the N status of wheat in a commercial plot has been monitored, varying the N supply taking into account the variability of the soil. The N content in the cover has been monitored simultaneously by sampling at field level and by using vegetation indices based on reflectance in the red-edge band. The results of the field campaign along a crop growth cycle show that the REP, MTCI, AIVI and CCCI calculated from narrow spectral bands show good linear correlations (R2>0.93) with respect to N content (g·m−2). These indices are stable when passing to broad bands as the case of Sentinel 2 with R2>0.9.


2019 ◽  
Vol 11 (3) ◽  
pp. 278 ◽  
Author(s):  
Samuel Kumbula ◽  
Paramu Mafongoya ◽  
Kabir Peerbhay ◽  
Romano Lottering ◽  
Riyad Ismail

Coryphodema tristis is a wood-boring insect, indigenous to South Africa, that has recently been identified as an emerging pest feeding on Eucalyptus nitens, resulting in extensive damage and economic loss. Eucalyptus plantations contributes over 9% to the total exported manufactured goods of South Africa which contributes significantly to the gross domestic product. Currently, the distribution extent of the Coryphodema tristis is unknown and estimated to infest Eucalyptus nitens compartments from less than 1% to nearly 80%, which is certainly a concern for the forestry sector related to the quantity and quality of yield produced. Therefore, the study sought to model the probability of occurrence of Coryphodema tristis on Eucalyptus nitens plantations in Mpumalanga, South Africa, using data from the Sentinel-2 multispectral instrument (MSI). Traditional field surveys were carried out through mass trapping in all compartments (n = 878) of Eucalyptus nitens plantations. Only 371 Eucalyptus nitens compartments were positively identified as infested and were used to generate the Coryphodema tristis presence data. Presence data and spectral features from the area were analysed using the Maxent algorithm. Model performance was evaluated using the receiver operating characteristics (ROC) curve showing the area under the curve (AUC) and True Skill Statistic (TSS) while the performance of predictors was analysed with the jack-knife. Validation of results were conducted using the test data. Using only the occurrence data and Sentinel-2 bands and derived vegetation indices, the Maxent model provided successful results, exhibiting an area under the curve (AUC) of 0.890. The Photosynthetic vigour ratio, Band 5 (Red edge 1), Band 4 (Red), Green NDVI hyper, Band 3 (Green) and Band 12 (SWIR 2) were identified as the most influential predictor variables. Results of this study suggest that remotely sensed derived vegetation indices from cost-effective platforms could play a crucial role in supporting forest pest management strategies and infestation control.


2020 ◽  
Vol 12 (9) ◽  
pp. 1453
Author(s):  
Juan M. Sánchez ◽  
Joan M. Galve ◽  
José González-Piqueras ◽  
Ramón López-Urrea ◽  
Raquel Niclòs ◽  
...  

Downscaling techniques offer a solution to the lack of high-resolution satellite Thermal InfraRed (TIR) data and can bridge the gap until operational TIR missions accomplishing spatio-temporal requirements are available. These techniques are generally based on the Visible Near InfraRed (VNIR)-TIR variable relations at a coarse spatial resolution, and the assumption that the relationship between spectral bands is independent of the spatial resolution. In this work, we adopted a previous downscaling method and introduced some adjustments to the original formulation to improve the model performance. Maps of Land Surface Temperature (LST) with 10-m spatial resolution were obtained as output from the combination of MODIS/Sentinel-2 images. An experiment was conducted in an agricultural area located in the Barrax test site, Spain (39°03′35″ N, 2°06′ W), for the summer of 2018. Ground measurements of LST transects collocated with the MODIS overpasses were used for a robust local validation of the downscaling approach. Data from 6 different dates were available, covering a variety of croplands and surface conditions, with LST values ranging 300–325 K. Differences within ±4.0 K were observed between measured and modeled temperatures, with an average estimation error of ±2.2 K and a systematic deviation of 0.2 K for the full ground dataset. A further cross-validation of the disaggregated 10-m LST products was conducted using an additional set of Landsat-7/ETM+ images. A similar uncertainty of ±2.0 K was obtained as an average. These results are encouraging for the adaptation of this methodology to the tandem Sentinel-3/Sentinel-2, and are promising since the 10-m pixel size, together with the 3–5 days revisit frequency of Sentinel-2 satellites can fulfill the LST input requirements of the surface energy balance methods for a variety of hydrological, climatological or agricultural applications. However, certain limitations to capture the variability of extreme LST, or in recently sprinkler irrigated fields, claim the necessity to explore the implementation of soil moisture or vegetation indices sensitive to soil water content as inputs in the downscaling approach. The ground LST dataset introduced in this paper will be of great value for further refinements and assessments.


Author(s):  
M. Piragnolo ◽  
G. Lusiani ◽  
F. Pirotti

Permanent pastures (PP) are defined as grasslands, which are not subjected to any tillage, but only to natural growth. They are important for local economies in the production of fodder and pastures (Ali et al. 2016). Under these definitions, a pasture is permanent when it is not under any crop-rotation, and its production is related to only irrigation, fertilization and mowing. Subsidy payments to landowners require monitoring activities to determine which sites can be considered PP. These activities are mainly done with visual field surveys by experienced personnel or lately also using remote sensing techniques. The regional agency for SPS subsidies, the Agenzia Veneta per i Pagamenti in Agricoltura (AVEPA) takes care of monitoring and control on behalf of the Veneto Region using remote sensing techniques. The investigation integrate temporal series of Sentinel-2 imagery with RPAS. Indeed, the testing area is specific region were the agricultural land is intensively cultivated for production of hay harvesting four times every year between May and October. The study goal of this study is to monitor vegetation presence and amount using the Normalized Difference Vegetation Index (NDVI), the Soil-adjusted Vegetation Index (SAVI), the Normalized Difference Water Index (NDWI), and the Normalized Difference Built Index (NDBI). The overall objective is to define for each index a set of thresholds to define if a pasture can be classified as PP or not and recognize the mowing.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 104
Author(s):  
Fardin Moradi ◽  
Ali Asghar Darvishsefat ◽  
Manizheh Rajab Pourrahmati ◽  
Azade Deljouei ◽  
Stelian Alexandru Borz

Due to the challenges brought by field measurements to estimate the aboveground biomass (AGB), such as the remote locations and difficulties in walking in these areas, more accurate and cost-effective methods are required, by the use of remote sensing. In this study, Sentinel-2 data were used for estimating the AGB in pure stands of Carpinus betulus (L., common hornbeam) located in the Hyrcanian forests, northern Iran. For this purpose, the diameter at breast height (DBH) of all trees thicker than 7.5 cm was measured in 55 square plots (45 × 45 m). In situ AGB was estimated using a local volume table and the specific density of wood. To estimate the AGB from remotely sensed data, parametric and nonparametric methods, including Multiple Regression (MR), Artificial Neural Network (ANN), k-Nearest Neighbor (kNN), and Random Forest (RF), were applied to a single image of the Sentinel-2, having as a reference the estimations produced by in situ measurements and their corresponding spectral values of the original spectral (B2, B3, B4, B5, B6, B7, B8, B8a, B11, and B12) and derived synthetic (IPVI, IRECI, GEMI, GNDVI, NDVI, DVI, PSSRA, and RVI) bands. Band 6 located in the red-edge region (0.740 nm) showed the highest correlation with AGB (r = −0.723). A comparison of the machine learning methods indicated that the ANN algorithm returned the best ABG-estimating performance (%RMSE = 19.9). This study demonstrates that simple vegetation indices extracted from Sentinel-2 multispectral imagery can provide good results in the AGB estimation of C. betulus trees of the Hyrcanian forests. The approach used in this study may be extended to similar areas located in temperate forests.


Author(s):  
Patrícia Lourenço

Comprehensive measurements of global forest aboveground biomass (AGB) are crucial information to promote the sustainable management of forests to mitigate climate change and preserve the multiple ecosystem services provided by forests. Optical and radar sensors are available at different spatial, spectral, and temporal scales. The integration of multi-sources sensor data with field measurements, using appropriated algorithms to identify the relationship between remote sensing predictors and reference measurements, is important to improve forest AGB estimation. This chapter aims to present different types of predicted variables derived from multi-sources sensors, such as original spectral bands, transformed images, vegetation indices, textural features, and different regression algorithms used (parametric and non-parametric) that contribute to a more robust, practical, and cost-effective approach for forest AGB estimation at different levels.


2019 ◽  
Vol 11 (22) ◽  
pp. 2647
Author(s):  
Dongyan Zhang ◽  
Shengmei Fang ◽  
Bao She ◽  
Huihui Zhang ◽  
Ning Jin ◽  
...  

Monitoring and mapping the spatial distribution of winter wheat accurately is important for crop management, damage assessment and yield prediction. In this study, northern and central Anhui province were selected as study areas, and Sentinel-2 imagery was employed to map winter wheat distribution and the results were verified with Planet imagery in the 2017–2018 growing season. The Sentinel-2 imagery at the heading stage was identified as the optimum period for winter wheat area extraction after analyzing the images from different growth stages using the Jeffries–Matusita distance method. Therefore, ten spectral bands, seven vegetation indices (VI), water index and building index generated from the image at the heading stage were used to classify winter wheat areas by a random forest (RF) algorithm. The result showed that the accuracy was from 93% to 97%, with a Kappa above 0.82 and a percentage error lower than 5% in northern Anhui, and an accuracy of about 80% with Kappa ranging from 0.70 to 0.78 and a percentage error of about 20% in central Anhui. Northern Anhui has a large planting scale of winter wheat and flat terrain while central Anhui grows relatively small winter wheat areas and a high degree of surface fragmentation, which makes the extraction effect in central Anhui inferior to that in northern Anhui. Further, an optimum subset data was obtained from VIs, water index, building index and spectral bands using an RF algorithm. The result of using the optimum subset data showed a high accuracy of classification with a great advantage in data volume and processing time. This study provides a perspective for winter wheat mapping under various climatic and complicated land surface conditions and is of great significance for crop monitoring and agricultural decision-making.


Sign in / Sign up

Export Citation Format

Share Document