scholarly journals IMPACT OF LAND USE CHANGE TO THE SOIL EROSION ESTIMATION FOR CULTURAL LANDSCAPES: CASE STUDY OF PAPHOS DISRICT IN CYPRUS

Author(s):  
B. Cuca ◽  
A. Agapiou

In 2006 UNESCO report has identified soil loss as one of the main threats of climate change with possible impact to natural and cultural heritage. The study illustrated in this paper shows the results from geomatic perspective, applying an interdisciplinary approach undertaken in order to identify major natural hazards affecting cultural landscapes and archaeological heritage in rural areas in Cyprus. In particular, Earth Observation (EO) and ground-based methods were identified and applied for mapping, monitoring and estimation of the possible soil loss caused by soil erosion. Special attention was given to the land use/land cover factor (C) and its impact on the overall estimation of the soil-loss. Cover factor represents the effect of soil-disturbing activities, plants, crop sequence and productivity level, soil cover and subsurface bio-mass on soil erosion. Urban areas have a definite role in retarding the recharge process, leading to increased runoff and soil loss in the broader area. On the other hand, natural vegetation plays a predominant role in reducing water erosion. The land use change was estimated based on the difference of the NDVI value between Landsat 5 TM and Sentinel-2 data for the period between 1980s’ until today. Cover factor was then estimated for both periods and significant land use changes were further examined in areas of significant cultural and natural landscape value. The results were then compared in order to study the impact of land use change on the soil erosion and hence on the soil loss rate in the selected areas.

2019 ◽  
Vol 11 (12) ◽  
pp. 3353 ◽  
Author(s):  
Mohammad Reza Azimi Sardari ◽  
Ommolbanin Bazrafshan ◽  
Thomas Panagopoulos ◽  
Elham Rafiei Sardooi

Climate and land use change can influence susceptibility to erosion and consequently land degradation. The aim of this study was to investigate in the baseline and a future period, the land use and climate change effects on soil erosion at an important dam watershed occupying a strategic position on the narrow Strait of Hormuz. The future climate change at the study area was inferred using statistical downscaling and validated by the Canadian earth system model (CanESM2). The future land use change was also simulated using the Markov chain and artificial neural network, and the Revised Universal Soil Loss Equation was adopted to estimate soil loss under climate and land use change scenarios. Results show that rainfall erosivity (R factor) will increase under all Representative Concentration Pathway (RCP) scenarios. The highest amount of R was 40.6 MJ mm ha−1 h−1y−1 in 2030 under RPC 2.6. Future land use/land cover showed rangelands turning into agricultural lands, vegetation cover degradation and an increased soil cover among others. The change of C and R factors represented most of the increase of soil erosion and sediment production in the study area during the future period. The highest erosion during the future period was predicted to reach 14.5 t ha−1 y−1, which will generate 5.52 t ha−1 y−1 sediment. The difference between estimated and observed sediment was 1.42 t ha−1 year−1 at the baseline period. Among the soil erosion factors, soil cover (C factor) is the one that watershed managers could influence most in order to reduce soil loss and alleviate the negative effects of climate change.


2021 ◽  
Author(s):  
Morteza Akbari ◽  
Ehsan Neamatollahi ◽  
Hadi Memarian ◽  
Mohammad Alizadeh Noughani

Abstract Floods cause great damage to ecosystems and are among the main agents of soil erosion. Given the importance of soils for the functioning of ecosystems and development and improvement of bio-economic conditions, the risk and rate of soil erosion was assessed using the RUSLE model in Iran’s Lorestan province before and after a period of major floods in late 2018 and early 2019. Furthermore, soil erosion was calculated for current and future conditions based on the Global Soil Erosion Modeling Database (GloSEM). The results showed that agricultural development and land use change are the main causes of land degradation in the southern and central parts of the study area. The impact of floods was also significant since our evaluations showed that soil erosion increased from 4.12 t ha-1 yr-1 before the floods to 10.93 t ha-1 yr-1 afterwards. Field surveying using 64 ground control points determined that erodibility varies from 0.17 to 0.49% in the study area. Orchards, farms, rangelands and forests with moderate or low vegetation cover were the most vulnerable land uses to soil erosion. The GloSEM modeling results revealed that climate change is the main cause of change in the rate of soil erosion. Combined land use change-climate change simulation showed that soil erosion will increase considerably in the future under SSP1-RCP2.6, SSP2-RCP4.5, and SSP5-RCP8.5 scenarios. In the study area, both natural factors, i.e. climate change and human factors such as agricultural development, population growth, and overgrazing are the main drivers of soil erosion.


Proceedings ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 62
Author(s):  
Zahra Kalantari ◽  
Johanna Sörensen

The densification of urban areas has raised concerns over increased pluvial flooding. Flood risk in urban areas might increase under the impact of land use changes. Urbanisation involves the conversion of natural areas to impermeable areas, causing lower infiltration rates and increased runoff. When high-intensity rainfall exceeds the capacity of an urban drainage system, the runoff causes pluvial flooding in low-laying areas. In the present study, a long time series (i.e., 20 years) of geo-referenced flood claims from property owners has been collected and analysed in detail to assess flood risk as it relates to land use changes in urban areas. The flood claim data come from property owners with flood insurance that covers property loss from overland flooding, groundwater intrusion through basement walls, as well as flooding from drainage systems; these data serve as a proxy of flood severity. The spatial relationships between land use change and flood occurrences in different urban areas were analysed. Special emphasis was placed on examining how nature-based solutions and blue-green infrastructure relate to flood risk. The relationships are defined by a statistical method explaining the tendencies whereby land use change affects flood risk.


2021 ◽  
Vol 13 (16) ◽  
pp. 9276
Author(s):  
Nareth Nut ◽  
Machito Mihara ◽  
Jaehak Jeong ◽  
Bunthan Ngo ◽  
Gilbert Sigua ◽  
...  

Agricultural expansion and urban development without proper soil erosion control measures have become major environmental problems in Cambodia. Due to a high population growth rate and increased economic activities, land use and land cover (LULC) changes will cause environmental disturbances, particularly soil erosion. This research aimed to estimate total amounts of soil loss using the Revised Universal Soil Loss Equation (RUSLE) model within a Geographic Information System (GIS) environment. LULC maps of Japan International Cooperation Agency (JICA) 2002 and Mekong River Commission (MRC) 2015 were used to evaluate the impact of LULC on soil erosion loss in Stung Sangkae catchment. LULC dynamics for the study periods in Stung Sangkae catchment showed that the catchment experienced a rapid conversion of forests to paddy rice fields and other croplands. The results indicated that the average soil loss from the catchment was 3.1 and 7.6 t/ha/y for the 2002 and 2015 periods, respectively. The estimated total soil loss in the 2002 and 2015 periods was 1.9 million t/y and 4.5 million t/y, respectively. The soil erosion was accelerated by steep slopes combined with the high velocity and erosivity of stormwater runoff. The spatial distribution of soil loss showed that the highest value (14.3 to 62.9 t/ha/y) was recorded in the central, southwestern and upland parts of the catchment. It is recommended that priority should be given to erosion hot spot areas, and appropriate soil and water conservation practices should be adopted to restore degraded lands.


Author(s):  
Mitiku Badasa Moisa ◽  
Daniel Assefa Negash ◽  
Biratu Bobo Merga ◽  
Dessalegn Obsi Gemeda

Abstract The impact of land-use land-cover (LULC) change on soil resources is getting global attention. Soil erosion is one of the critical environmental problems worldwide with high severity in developing countries. This study integrates the Revised Universal Soil Loss Equation model with a geographic information system to estimate the impacts of LULC conversion on the mean annual soil loss in the Temeji watershed. In this study, LULC change of Temeji watershed was assessed from 2000 to 2020 by using 2000 Landsat ETM+ and 2020 Landsat OLI/TIRS images and classified using supervised maximum likelihood classification algorithms. Results indicate that the majority of the LULC in the study area is vulnerable to soil erosion. High soil loss is observed when grassland and forest land were converted into cultivated land with a mean soil loss of 88.8 and 86.9 t/ha/year in 2020. Results revealed that about 6,608.5 ha (42.8%) and 8,391.8 ha (54.4%) were categorized under severe classes in 2000 and 2020, respectively. Accordingly, the soil loss severity class is directly correlated with the over-exploitation of forest resources and grasslands for agricultural purposes. These results can be useful for advocacy to enhance local people and stakeholder's participation toward soil and water conservation practices.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 529 ◽  
Author(s):  
Chenlu Huang ◽  
Qinke Yang ◽  
Xiayu Cao ◽  
Yuru Li

Soil erosion is a serious environmental problem in the Loess Plateau, China. Therefore, it is important to understand and evaluate soil erosion process in a watershed. In this study, the Chinese Soil Loss Equation (CSLE) is developed to evaluate the soil loss and analyze the impact of land use and slope on soil erosion in Jiuyuangou (JYG) watershed located in the hilly-gullied loess region of China 1970–2015. The results show that the quantities of soil erosion decreased clearly from 1977 to 2015 in the study area, which from 2011 (t/km²·a) in 1977 to 164 (t/km²·a) in 2004 and increased slowly to 320 (t/km²·a) in 2015. No significant soil erosion (<300 t/km²·a) changed in JYG watershed, which increased dramatically from 8.93% to 69.34% during 1977–2015. The area of farmland in this study area has been reduced drastically. Noting that the annual average soil erosion modulus of grassland was also showing a dropped trend from 1977 to 2015. In addition, the study shows that the annual average soil erosion modulus varied with slope gradient and the severe soil erosion often existed in the slope zone above 25°, which accounted for 4657 (t/km²·a) in 1977 and 382.27 (t/km²·a) in 2015. Meanwhile, soil erosion of different land-use types presented the similar changing trend (declined noticeably and then increased slowly) with the change of slope gradient from 1977 to 2015. Combined the investigations of extreme rainfall on 26 July 2015 for JYG watershed, the study provides the scientific support for the implementation of soil and water conservation measures to reduce the soil erosion and simplify Yellow River management procedures.


2020 ◽  
Vol 12 (22) ◽  
pp. 9740
Author(s):  
Benjamin Kipkemboi Kogo ◽  
Lalit Kumar ◽  
Richard Koech

This study examined the impact of land use/cover changes on soil erosion in western Kenya in the years 1995 and 2017. The study used the GIS-based Revised Universal Soil Loss Equation (RUSLE) modelling approach and remote sensing assessment. The results showed that the average soil loss through sheet, rill and inter-rill soil erosion processes was 0.3 t/ha/y and 0.5 t/ha/y, in the years 1995 and 2017, respectively. Of the total soil loss, farms contributed more than 50%, both in 1995 and 2017 followed by grass/shrub (7.9% in 1995 and 11.9% in 2017), forest (16% in 1995 and 11.4% in 2017), and the least in built-up areas. The highest soil erosion rates were observed in farms cleared from forests (0.84 tons/ha) followed by those converted from grass/shrub areas (0.52 tons/ha). The rate of soil erosion was observed to increase with slope due to high velocity and erosivity of the runoff. Areas with high erodibility in the region are found primarily in slopes of more than 30 degrees, especially in Mt. Elgon, Chereng’anyi hills and Elgeyo escarpments. This study forms the first multi-temporal assessment to explore the extent of soil erosion and seeks to provide a useful knowledge base to support decision-makers in developing strategies to mitigate soil erosion for sustainable crop production.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xianmeng Meng ◽  
Yan Zhu ◽  
Maosheng Yin ◽  
Dengfeng Liu

AbstractIn order to discuss the effect of rainfall patterns and land use types on soil erosion, the experiment is carried out under natural rainfall events on different kinds of runoff plots in Zhangjiachong watershed. Based on the observed data of 44 individual rainfall events including moderate, heavy and storm rainfall, the differences of erosion modulus among hedgerows plots, terrace plots, and slope plots under different rainfall patterns are analyzed. And the effects of hedgerow and terrace patterns on control of soil loss are revealed by RUSLE. Wilcoxon signed rank test is applied to analyze the significant difference of erosion modulus in different plots and the coefficient of variation is used to compare the characteristics of erosion modulus under different rainfall patterns. The results show that the soil erosion modulus of earth banked terrace has the highest value and the lowest soil erosion modulus occurs in the slope land with hedgerows. The coefficients of variation for soil erosion modulus under heavy and storm rainfall are larger than that of moderate rainfall. Hedgerow pattern can effectively control soil erosion under moderate and heavy rainfall while the effect of hedgerow is considerably weakened under storm rainfall. Earth banked terraces own the highest erosion modulus followed by slope land and stone dike terraces.


2021 ◽  
Vol 11 (9) ◽  
pp. 4154
Author(s):  
Siniša Polovina ◽  
Boris Radić ◽  
Ratko Ristić ◽  
Jovan Kovačević ◽  
Vukašin Milčanović ◽  
...  

Soil erosion is a global problem that negatively affects the quality of the environment, the availability of natural resources, as well as the safety of inhabitants. Soil erosion threatens the functioning of urban areas, which was the reason for choosing the territory of the Master Plan of Belgrade (Serbia) as the research area. The calculation of soil erosion loss was analyzed using the G2 erosion model. The model belongs to a group of empirical models and is based on the synthesis of the equation from the Revised Universal Soil Loss Equation (RUSLE) and the Erosion Potential Method (EPM). The estimation of soil degradation was analyzed in two time periods (2001 and 2019), which represent the time boundaries of the management of the Master Plan of Belgrade. The novel approach used in this research is based on using the land cover inventory as a dynamic indicator of the urbanization process. Land cover was identified using remote sensing, machine learning techniques, and the random forest algorithm applied to multispectral satellite images of the Landsat mission in combination with spectral indices. Climatic parameters were analyzed on the basis of data from meteorological stations (first scenario, i.e., 2001), as well as on simulations of changes based on climate scenario RCP8.5 (representative concentration pathways) concerning the current condition of the land cover (second scenario). A comparative analysis of the two time periods identified a slight reduction in total soil loss. For the first period, the average soil loss value is 4.11 t·ha−1·y−1. The analysis of the second period revealed an average value of 3.63 t·ha−1·y−1. However, the increase in non-porous surfaces has led to a change in the focus of soil degradation. Increased average soil loss as one of the catalysts of torrential flood frequencies registered on natural and semi-natural areas were 43.29% and 16.14%, respectively. These results are a significant contribution to the study of soil erosion in urban conditions under the impact of climate change.


Sign in / Sign up

Export Citation Format

Share Document